Separating Sources for Encryption and Secret Sharing

Yevgeniy Dodis Krzysztof Pietrzak Bartosz Przydatek NYU

ENS Paris
ETH Zurich

Introduction

- Randomness is essential, not only in cryptography

Introduction

- Randomness is essential, not only in cryptography
- Perfect random bits not always available

Introduction

- Randomness is essential, not only in cryptography
- Perfect random bits not always available

\Rightarrow characterize randomness necessary/sufficient for concrete tasks

Imperfect Sources

- Random source: a set of distributions over some set \mathcal{X}

Imperfect Sources

- Random source: a set of distributions over some set \mathcal{X}
- d-weak sources: distributions with min-entropy $\geq d$ \Rightarrow no value appears with prob. greater than $1 / 2^{d}$

Imperfect Sources

- Random source: a set of distributions over some set \mathcal{X}
- d-weak sources: distributions with min-entropy $\geq d$ \Rightarrow no value appears with prob. greater than $1 / 2^{d}$
- Cryptographic sources:
\Rightarrow sufficient for specific cryptographic application

Imperfect Sources

- Random source: a set of distributions over some set \mathcal{X}
- d-weak sources: distributions with min-entropy $\geq d$ \Rightarrow no value appears with prob. greater than $1 / 2^{d}$
- Cryptographic sources:
\Rightarrow sufficient for specific cryptographic application
- extremely weak sources are sufficient for BPP [ACRT'99]

Imperfect Sources

- Random source: a set of distributions over some set \mathcal{X}
- d-weak sources: distributions with min-entropy $\geq d$ \Rightarrow no value appears with prob. greater than $1 / 2^{d}$
- Cryptographic sources:
\Rightarrow sufficient for specific cryptographic application
- extremely weak sources are sufficient for BPP [ACRT'99]
- $(n / 2+\tau)$-weak sources over $\{0,1\}^{n}$ are sufficient for authentication [MW'97]

Separating sources

- $(n / 2-\epsilon)$-weak sources over $\{0,1\}^{n}$ are not sufficient for authentication [DS'02]

Separating sources

- $(n / 2-\epsilon)$-weak sources over $\{0,1\}^{n}$ are not sufficient for authentication [DS'02]
- ($n-1$)-weak sources over $\{0,1\}^{n}$ are not sufficient for encryption [MP'90] or extraction

Separating sources

- $(n / 2-\epsilon)$-weak sources over $\{0,1\}^{n}$ are not sufficient for authentication [DS'02]
- $(n-1)$-weak sources over $\{0,1\}^{n}$ are not sufficient for encryption [MP'90] or extraction
- there exist sources allowing perfect encryption but not extraction [DS'02]

Separating sources

- $(n / 2-\epsilon)$-weak sources over $\{0,1\}^{n}$ are not sufficient for authentication [DS'02]
- $(n-1)$-weak sources over $\{0,1\}^{n}$ are not sufficient for encryption [MP'90] or extraction
- there exist sources allowing perfect encryption but not extraction [DS'02]
\Rightarrow Entropy not enough for 1-bit encryption, but perfect randomness not necessary as well!

Separating sources

- $(n / 2-\epsilon)$-weak sources over $\{0,1\}^{n}$ are not sufficient for authentication [DS'02]
- $(n-1)$-weak sources over $\{0,1\}^{n}$ are not sufficient for encryption [MP'90] or extraction
- there exist sources allowing perfect encryption but not extraction [DS'02]
\Rightarrow Entropy not enough for 1-bit encryption, but perfect randomness not necessary as well!

This work: compare sources for secret sharing and encryption of 1 bit

Outline

- More formal statement of the results
- Encryption \rightarrow 2-2 Secret Sharing
- 2-2 Secret Sharing \rightarrow Encryption
- 2-2 Secret Sharing \rightarrow (1/2)-Encryption
- Computational aspects of separation
- Open problems
- Conclusions

δ-encryption with source \mathscr{S}

Enc: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}, \operatorname{Dec}: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$

δ-encryption with source \mathscr{S}

Enc: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}, \quad \operatorname{Dec}: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$, such that
$\forall k \in \mathcal{K}, m \in \mathcal{M}: \operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=m$

δ-encryption with source \mathscr{S}

Enc: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$, Dec: $\mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$, such that

$$
\forall k \in \mathcal{K}, m \in \mathcal{M}: \operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=m
$$

statistical distance of encryptions of $0 \& 1$ is at most δ

$$
\max _{\Omega \in \mathscr{\mathscr { M }}} \frac{1}{2} \sum_{c \in \mathcal{C}}\left|\operatorname{Pr}_{k \in \Omega}\left[\mathrm{Enc}_{k}(0)=c\right]-\operatorname{Pr}_{k \in \Omega} \mathcal{K}\left[\mathrm{Enc}_{k}(1)=c\right]\right| \leq \delta
$$

δ-encryption with source \mathscr{S}

Enc: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$, Dec: $\mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$, such that

$$
\forall k \in \mathcal{K}, m \in \mathcal{M}: \operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=m
$$

statistical distance of encryptions of $0 \& 1$ is at most δ

$$
\max _{\Omega \in \mathscr{\mathscr { C }}} \frac{1}{2} \sum_{c \in \mathcal{C}}\left|\operatorname{Pr}_{k \in \Omega}\left[\operatorname{Enc}_{k}(0)=c\right]-\operatorname{Pr}_{k \in \Omega} \mathcal{K}\left[\operatorname{Enc}_{k}(1)=c\right]\right| \leq \delta
$$

\Rightarrow 0-encryption \equiv perfect encryption
\Rightarrow 1-encryption \equiv identity (no encryption)

2-2 Secret Sharing with source \mathscr{S}

Share: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{X}^{2}, \quad \operatorname{Rec}: \mathcal{X}^{2} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$

2-2 Secret Sharing with source \mathscr{S}

Share: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{X}^{2}, \quad \operatorname{Rec}: \mathcal{X}^{2} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$, such that $\forall k \in \mathcal{K}, m \in \mathcal{M}: \operatorname{Rec}\left(\operatorname{Share}_{k}(m)\right)=m$

2-2 Secret Sharing with source \mathscr{S}

Share: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{X}^{2}, \quad \operatorname{Rec}: \mathcal{X}^{2} \rightarrow \mathcal{M}, \mathcal{M}=\{0,1\}$, such that

$$
\forall k \in \mathcal{K}, m \in \mathcal{M}: \operatorname{Rec}\left(\operatorname{Share}_{k}(m)\right)=m
$$

perfect secrecy: $\forall \Omega \in \mathscr{S}, K \in \Omega \mathcal{K},\left(S_{1}, S_{2}\right) \leftarrow \operatorname{Share}_{K}(M)$

$$
H\left(M \mid S_{i}\right)=H(M)
$$

Encryption \rightarrow 2-2 Secret Sharing

Given

$$
\text { Enc: } \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C} \quad \text { Dec: } \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}
$$

define

$$
\begin{aligned}
\operatorname{Share}_{k}(m) & \rightarrow\left(k, \operatorname{Enc}_{k}(m)\right) \\
\operatorname{Rec}\left(s_{1}, s_{2}\right) & \rightarrow \operatorname{Dec}_{s_{1}}\left(s_{2}\right)
\end{aligned}
$$

2-2 Secret Sharing \nrightarrow Encryption

Theorem

1. There exist sources which allow for perfect 2-2 secret sharing, but do not allow for δ-encryption for any $\delta<1 / 3$.

2-2 Secret Sharing \nrightarrow Encryption

Theorem

1. There exist sources which allow for perfect 2-2 secret sharing, but do not allow for δ-encryption for any $\delta<1 / 3$.
2. Any source which allows for perfect 2-2 secret sharing allows for (1/2)-encryption.

Graph Representation: 1-bit encryption [DS'02]

- nodes \equiv ciphertexts, edges \equiv keys

Graph Representation: 1-bit encryption [DS'02]

- nodes \equiv ciphertexts, edges \equiv keys

- for a key $k \in \mathcal{K}: \operatorname{Enc}_{k}(0)=u, \operatorname{Enc}_{k}(1)=v$

Graph Representation: 1-bit encryption [DS'02]

- nodes \equiv ciphertexts, edges \equiv keys

- distribution on $\mathcal{K} \equiv$ weights on edges

Graph Representation: 1-bit encryption [DS'02]

- nodes \equiv ciphertexts, edges \equiv keys

- perfect encryption under distribution Ω :
$\forall v$: weighted in-flow $(v)=$ weighted out-flow (v)

$$
p_{1}+p_{2}=p_{3}+p_{4}
$$

Graph Representation: 1-bit encryption [DS'02]

- nodes \equiv ciphertexts, edges \equiv keys

- perfect encryption under distribution Ω :
$\forall v$: weighted in-flow $(v)=$ weighted out-flow (v)
$\Rightarrow \Omega$ forms a circulation

Graph Representation: 1-bit encryption [DS'02]

- nodes \equiv ciphertexts, edges \equiv keys

- perfect encryption under distribution Ω :
$\forall v$: weighted in-flow $(v)=$ weighted out-flow (v)
$\Rightarrow \Omega$ forms a circulation

Graph Representation: 2-2 secret sharing

- nodes \equiv shares, edge-pairs \equiv randomness

Graph Representation: 2-2 secret sharing

- nodes \equiv shares, edge-pairs \equiv randomness

- for randomness $k \in \mathcal{K}$:

Share $_{k}(0)=\left(a_{1}, b_{1}\right), \quad$ Share $_{k}(1)=\left(a_{3}, b_{4}\right)$

Graph Representation: 2-2 secret sharing

- nodes \equiv shares, edge-pairs \equiv randomness

- distribution on $\mathcal{K} \equiv$ weights on edge-pairs

Graph Representation: 2-2 secret sharing

- nodes \equiv shares, edge-pairs \equiv randomness

- perfect secret sharing under distribution Ω :
$\forall v$: weighted in-flow $(v)=$ weighted out-flow (v)

$$
\text { in } a_{1}: p_{1}=p_{2}
$$

Graph Representation: 2-2 secret sharing

- nodes \equiv shares, edge-pairs \equiv randomness

- perfect secret sharing under distribution Ω :
$\forall v:$ weighted in-flow $(v)=$ weighted out-flow (v)
$\Rightarrow \Omega$ forms a circulation

2-2 Secret Sharing \nrightarrow Encryption (proof)

a source $\mathscr{S}=\left\{\Omega_{1}, \ldots, \Omega_{4}\right\}$ good for sharing:
$\Rightarrow 6$ keys, $\mathcal{K}=\left\{k_{1}, \ldots, k_{6}\right\}:$

2-2 Secret Sharing \nrightarrow Encryption (proof)

a source $\mathscr{S}=\left\{\Omega_{1}, \ldots, \Omega_{4}\right\}$ good for sharing:
$\Rightarrow 6$ keys, $\mathcal{K}=\left\{k_{1}, \ldots, k_{6}\right\}$:

$\Rightarrow 4$ distributions (Ω_{i} uniform on \mathcal{S}_{i}):

2-2 Secret Sharing \nrightarrow Encryption (cont.)

\mathscr{S} is good for sharing ... but bad for encryption!

- $G=(V, E)$ - hypothetical encryption graph E labeled with elements of $\mathcal{K}=\left\{k_{1}, \ldots, k_{6}\right\}$

2-2 Secret Sharing \nrightarrow Encryption (cont.)

\mathscr{S} is good for sharing ... but bad for encryption!

- $G=(V, E)$ - hypothetical encryption graph E labeled with elements of $\mathcal{K}=\left\{k_{1}, \ldots, k_{6}\right\}$
- perfect encryption:
$\forall i=1 . .4, \Omega_{i}$ forms a cycle in G

2-2 Secret Sharing \nrightarrow Encryption (cont.)

\mathscr{S} is good for sharing ... but bad for encryption!

- $G=(V, E)$ - hypothetical encryption graph E labeled with elements of $\mathcal{K}=\left\{k_{1}, \ldots, k_{6}\right\}$
- perfect encryption: $\forall i=1 . .4, \Omega_{i}$ forms a cycle in G
- will show: for at least one \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ do not form a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

$$
\mathcal{S}_{1}:\left\{k_{1}, k_{2}\right\}, \mathcal{S}_{2}:\left\{k_{3}, k_{4}\right\}, \mathcal{S}_{3}:\left\{k_{1}, k_{3}, k_{5}\right\}, \mathcal{S}_{4}:\left\{k_{1}, k_{4}, k_{6}\right\}
$$

- assume for each \mathcal{S}_{i} edges $E\left(\mathcal{S}_{i}\right)$ forms a cycle
$\quad\left(c_{1}=c_{4} \oplus c_{2}=c_{3}\right)$ and $\left(c_{1}=c_{3} \oplus c_{2}=c_{4}\right)$
\Rightarrow Contradiction!

2-2 Secret Sharing \nrightarrow Encryption (cont.)

- take Ω_{i} such that $E\left(\mathcal{S}_{i}\right)$ don't form a cycle

2-2 Secret Sharing \nrightarrow Encryption (cont.)

- take Ω_{i} such that $E\left(\mathcal{S}_{i}\right)$ don't form a cycle
- since $\left|\mathcal{S}_{i}\right| \leq 3$ we get

$$
\frac{1}{2} \sum_{c \in \mathcal{C}}\left|\operatorname{Pr}_{k \in \Omega_{\Omega_{i}} \mathcal{K}}\left[\operatorname{Enc}_{k}(0)=c\right]-\operatorname{Pr}_{k \in \Omega_{i} \mathcal{K}}\left[\operatorname{Enc}_{k}(1)=c\right]\right| \geq \frac{1}{3}
$$

2-2 Secret Sharing \nrightarrow Encryption (cont.)

- take Ω_{i} such that $E\left(\mathcal{S}_{i}\right)$ don't form a cycle
- since $\left|\mathcal{S}_{i}\right| \leq 3$ we get

$$
\frac{1}{2} \sum_{c \in \mathcal{C}}\left|\operatorname{Pr}_{k \in \Omega_{\Omega_{i}} \mathcal{K}}\left[\operatorname{Enc}_{k}(0)=c\right]-\operatorname{Pr}_{k \in \Omega_{i} \mathcal{K}}\left[\operatorname{Enc}_{k}(1)=c\right]\right| \geq \frac{1}{3}
$$

- there is no δ-encryption for \mathscr{S} with $\delta<1 / 3$.

2-2 Secret Sharing \nrightarrow Encryption (cont.)

- take Ω_{i} such that $E\left(\mathcal{S}_{i}\right)$ don't form a cycle
- since $\left|\mathcal{S}_{i}\right| \leq 3$ we get

$$
\frac{1}{2} \sum_{c \in \mathcal{C}}\left|\operatorname{Pr}_{k \in \Omega_{i} \mathcal{K}}\left[\operatorname{Enc}_{k}(0)=c\right]-\operatorname{Pr}_{k \in \Omega_{i}} \mathcal{K}\left[\operatorname{Enc}_{k}(1)=c\right]\right| \geq \frac{1}{3}
$$

- there is no δ-encryption for \mathscr{S} with $\delta<1 / 3$.
\Rightarrow Theorem holds also for high min-entropy sources.

2-2 Secret Sharing \rightarrow (1/2)-Encryption

Given
Share: $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{X}^{2}, \quad \operatorname{Rec}: \mathcal{X}^{2} \rightarrow \mathcal{M}$
let

$$
\left(a_{m, k}, b_{m, k}\right) \leftarrow \operatorname{Share}_{k}(m) .
$$

2-2 Secret Sharing \rightarrow (1/2)-Encryption

Given

$$
\text { Share: } \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{X}^{2}, \quad \operatorname{Rec}: \mathcal{X}^{2} \rightarrow \mathcal{M}
$$

let

$$
\left(a_{m, k}, b_{m, k}\right) \leftarrow \operatorname{Share}_{k}(m) .
$$

Define

- b_{4}

Computational aspects of separation

Some efficiency requirements:
(i) the secret sharing is efficient

Computational aspects of separation

Some efficiency requirements:
(i) the secret sharing is efficient
(ii) for every δ-encryption scheme the source contains an efficiently samplable distribution breaking the encryption

Computational aspects of separation

Some efficiency requirements:
(i) the secret sharing is efficient
(ii) for every δ-encryption scheme the source contains an efficiently samplable distribution breaking the encryption
(iii) there exists an efficient algorithm breaking the encryption under distribution from (ii)

Computational aspects of separation

Some efficiency requirements:
(i) the secret sharing is efficient
(ii) for every δ-encryption scheme the source contains an efficiently samplable distribution breaking the encryption
(iii) there exists an efficient algorithm breaking the encryption under distribution from (ii)
(iv) distribution from (ii) can be found efficiently

Computational aspects of separation

Some efficiency requirements:
(i) the secret sharing is efficient
(ii) for every δ-encryption scheme the source contains an efficiently samplable distribution breaking the encryption
(iii) there exists an efficient algorithm breaking the encryption under distribution from (ii)
(iv) distribution from (ii) can be found efficiently
\Rightarrow Can extend our separation to satisfy (i)-(iv) simultaneously!

Open problems

- Separations for larger domains
\Rightarrow open even for $\mathcal{M}=\{0,1,2\}$!

Open problems

- Separations for larger domains
\Rightarrow open even for $\mathcal{M}=\{0,1,2\}$!
- Sources for other cryptographic primitives
\Rightarrow position authentication wrt. encryption or sharing

Conclusions

- Separation between 2-2 secret sharing and encryption ...

Conclusions

- Separation between 2-2 secret sharing and encryption...
- ... but not as strong as between encryption and extraction.

Conclusions

- Separation between 2-2 secret sharing and encryption...
- ... but not as strong as between encryption and extraction.
- Many interesting open problems.

