Separating Sources for Encryption and Secret Sharing

Yevgeniy Dodis NYU Krzysztof Pietrzak ENS Paris Bartosz Przydatek ETH Zurich

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

Randomness is essential, not only in cryptography

Introduction

- Randomness is essential, not only in cryptography
- Perfect random bits not always available

Introduction

- Randomness is essential, not only in cryptography
- Perfect random bits not always available

 \Rightarrow characterize randomness necessary/sufficient for concrete tasks

 \blacktriangleright Random source: a set of distributions over some set ${\cal X}$

 \blacktriangleright Random source: a set of distributions over some set ${\cal X}$

(日) (日) (日) (日) (日) (日) (日) (日)

d-weak sources: distributions with min-entropy ≥ d
 ⇒ no value appears with prob. greater than 1/2^d

- \blacktriangleright Random source: a set of distributions over some set ${\cal X}$
- *d*-weak sources: distributions with min-entropy ≥ d
 ⇒ no value appears with prob. greater than 1/2^d
- Cryptographic sources:
 - \Rightarrow sufficient for specific cryptographic application

- \blacktriangleright Random source: a set of distributions over some set ${\cal X}$
- *d*-weak sources: distributions with min-entropy ≥ d
 ⇒ no value appears with prob. greater than 1/2^d
- Cryptographic sources:
 - \Rightarrow sufficient for specific cryptographic application
- extremely weak sources are sufficient for BPP [ACRT'99]

- \blacktriangleright Random source: a set of distributions over some set ${\cal X}$
- *d*-weak sources: distributions with min-entropy ≥ d
 ⇒ no value appears with prob. greater than 1/2^d
- Cryptographic sources:
 - \Rightarrow sufficient for specific cryptographic application
- extremely weak sources are sufficient for BPP [ACRT'99]

► (n/2 + \tau)-weak sources over {0, 1}ⁿ are sufficient for authentication [MW'97]

► (n/2 - ε)-weak sources over {0, 1}ⁿ are not sufficient for authentication [DS'02]

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

- ► (n/2 ε)-weak sources over {0, 1}ⁿ are not sufficient for authentication [DS'02]
- ► (n 1)-weak sources over {0, 1}ⁿ are **not** sufficient for encryption [MP'90] or extraction

- ► (n/2 ε)-weak sources over {0, 1}ⁿ are not sufficient for authentication [DS'02]
- ► (n 1)-weak sources over {0, 1}ⁿ are **not** sufficient for encryption [MP'90] or extraction
- there exist sources allowing perfect encryption but not extraction [DS'02]

- ► (n/2 ε)-weak sources over {0, 1}ⁿ are not sufficient for authentication [DS'02]
- ► (n 1)-weak sources over {0, 1}ⁿ are **not** sufficient for encryption [MP'90] or extraction
- there exist sources allowing perfect encryption but not extraction [DS'02]

 \Rightarrow Entropy not enough for 1-bit encryption, but perfect randomness not necessary as well!

- ► (n/2 ε)-weak sources over {0, 1}ⁿ are not sufficient for authentication [DS'02]
- ► (n 1)-weak sources over {0, 1}ⁿ are **not** sufficient for encryption [MP'90] or extraction
- there exist sources allowing perfect encryption but not extraction [DS'02]
- \Rightarrow Entropy not enough for 1-bit encryption, but perfect randomness not necessary as well!

This work: compare sources for secret sharing and encryption of 1 bit

Outline

- More formal statement of the results
- Encryption \rightarrow 2-2 Secret Sharing
- ▶ 2-2 Secret Sharing $\not\rightarrow$ Encryption
- ▶ 2-2 Secret Sharing \rightarrow (1/2)-Encryption

(日) (日) (日) (日) (日) (日) (日) (日)

- Computational aspects of separation
- Open problems
- Conclusions

 $\mathsf{Enc}\colon \mathcal{K}\times\mathcal{M}\to\mathcal{C},\;\;\mathsf{Dec}\colon \mathcal{K}\times\mathcal{C}\to\mathcal{M},\;\mathcal{M}=\{0,1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $\mathsf{Enc}\colon \mathcal{K}\times\mathcal{M}\to\mathcal{C},\;\;\mathsf{Dec}\colon \mathcal{K}\times\mathcal{C}\to\mathcal{M},\;\mathcal{M}=\{0,1\}\text{, such that}$

 $\forall k \in \mathcal{K}, m \in \mathcal{M} : \operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

$$\mathsf{Enc}\colon \mathcal{K}\times\mathcal{M}\to\mathcal{C},\;\;\mathsf{Dec}\colon \mathcal{K}\times\mathcal{C}\to\mathcal{M},\;\mathcal{M}=\{0,1\},\;\mathsf{such that}\;\;$$

$$\forall k \in \mathcal{K}, m \in \mathcal{M} : \operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$$

statistical distance of encryptions of 0 & 1 is at most δ

$$\max_{\Omega \in \mathscr{S}} \frac{1}{2} \sum_{c \in \mathcal{C}} \left| \Pr_{k \in \Omega \mathcal{K}} [\mathsf{Enc}_k(0) = c] - \Pr_{k \in \Omega \mathcal{K}} [\mathsf{Enc}_k(1) = c] \right| \leq \delta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mathsf{Enc}\colon \mathcal{K}\times\mathcal{M}\to\mathcal{C},\;\;\mathsf{Dec}\colon \mathcal{K}\times\mathcal{C}\to\mathcal{M},\;\mathcal{M}=\{0,1\},\;\mathsf{such that}\;\;$$

$$\forall k \in \mathcal{K}, m \in \mathcal{M} : \operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$$

statistical distance of encryptions of 0 & 1 is at most δ

$$\max_{\Omega \in \mathscr{S}} \frac{1}{2} \sum_{c \in \mathcal{C}} \left| \Pr_{k \in \Omega \mathcal{K}} [\mathsf{Enc}_k(0) = c] - \Pr_{k \in \Omega \mathcal{K}} [\mathsf{Enc}_k(1) = c] \right| \leq \delta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- \Rightarrow 0-encryption \equiv perfect encryption
- \Rightarrow 1-encryption \equiv identity (no encryption)

2-2 Secret Sharing with source \mathscr{S}

Share: $\mathcal{K} \times \mathcal{M} \to \mathcal{X}^2$, Rec: $\mathcal{X}^2 \to \mathcal{M}$, $\mathcal{M} = \{0, 1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

2-2 Secret Sharing with source \mathscr{S}

Share: $\mathcal{K} \times \mathcal{M} \to \mathcal{X}^2$, Rec: $\mathcal{X}^2 \to \mathcal{M}$, $\mathcal{M} = \{0, 1\}$, such that $\forall k \in \mathcal{K}, m \in \mathcal{M}$: Rec(Share_k(m)) = m

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2-2 Secret Sharing with source \mathscr{S}

Share: $\mathcal{K} \times \mathcal{M} \to \mathcal{X}^2$, Rec: $\mathcal{X}^2 \to \mathcal{M}$, $\mathcal{M} = \{0, 1\}$, such that $\forall \ k \in \mathcal{K}, \ m \in \mathcal{M} : \operatorname{Rec}(\operatorname{Share}_k(m)) = m$ perfect secrecy: $\forall \ \Omega \in \mathscr{S}, \ K \in_{\Omega} \mathcal{K}, \ (S_1, S_2) \leftarrow \operatorname{Share}_{\mathcal{K}}(M)$ $H(M | S_i) = H(M)$

 ${\sf Encryption} \to \text{2-2 Secret Sharing}$

Given

$$\mathsf{Enc}\colon \mathcal{K}\times\mathcal{M}\to\mathcal{C}\qquad \mathsf{Dec}\colon \mathcal{K}\times\mathcal{C}\to\mathcal{M}$$

define

$$Share_k(m) \rightarrow (k, Enc_k(m))$$

 $Rec(s_1, s_2) \rightarrow Dec_{s_1}(s_2)$

Theorem

1. There exist sources which allow for perfect 2-2 secret sharing, but do not allow for δ -encryption for any $\delta < 1/3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

1. There exist sources which allow for perfect 2-2 secret sharing, but do not allow for δ -encryption for any $\delta < 1/3$.

2. Any source which allows for perfect 2-2 secret sharing allows for (1/2)-encryption.

• nodes \equiv ciphertexts, edges \equiv keys

イロト イポト イヨト イヨト

- 3

• nodes \equiv ciphertexts, edges \equiv keys

イロト 不得 とうき イヨト 二日

▶ for a key $k \in \mathcal{K}$: $\operatorname{Enc}_k(0) = u$, $\operatorname{Enc}_k(1) = v$

• nodes \equiv ciphertexts, edges \equiv keys

• distribution on $\mathcal{K} \equiv$ weights on edges

• nodes \equiv ciphertexts, edges \equiv keys

perfect encryption under distribution Ω:

 $\forall v : weighted in-flow(v) = weighted out-flow(v)$

$$p_1 + p_2 = p_3 + p_4$$

• nodes \equiv ciphertexts, edges \equiv keys

perfect encryption under distribution Ω:

 $\forall v : weighted in-flow(v) = weighted out-flow(v)$ $\Rightarrow \Omega$ forms a **circulation**

• nodes \equiv ciphertexts, edges \equiv keys

perfect encryption under distribution Ω:

 $\forall v : weighted in-flow(v) = weighted out-flow(v)$ $\Rightarrow \Omega$ forms a **circulation**

• nodes \equiv shares, edge-pairs \equiv randomness

イロト イポト イヨト イヨト

• nodes \equiv shares, edge-pairs \equiv randomness

► for randomness $k \in \mathcal{K}$: Share_k(0) = (a₁, b₁), Share_k(1) = (a₃, b₄)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

• nodes \equiv shares, edge-pairs \equiv randomness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \blacktriangleright distribution on $\mathcal{K}\equiv$ weights on edge-pairs

• nodes \equiv shares, edge-pairs \equiv randomness

perfect secret sharing under distribution Ω:

 $\forall v : weighted in-flow(v) = weighted out-flow(v)$

in
$$a_1$$
: $p_1 = p_2$

• nodes \equiv shares, edge-pairs \equiv randomness

perfect secret sharing under distribution Ω:

 $\forall v : weighted in-flow(v) = weighted out-flow(v)$

 $\Rightarrow \Omega$ forms a **circulation**

a source $\mathscr{S} = \{\Omega_1, \ldots, \Omega_4\}$ good for sharing:

 \Rightarrow 6 keys, $\mathcal{K} = \{k_1, \ldots, k_6\}$:

2-2 Secret Sharing → Encryption (proof)

a source $\mathscr{S} = \{\Omega_1, \ldots, \Omega_4\}$ good for sharing:

 \Rightarrow 6 keys, $\mathcal{K} = \{k_1, \ldots, k_6\}$:

 \Rightarrow 4 distributions (Ω_i uniform on \mathcal{S}_i):

 ${\mathscr S}$ is good for sharing \ldots but bad for encryption!

► G = (V, E) — hypothetical encryption graph E labeled with elements of K = {k₁,..., k₆}

 ${\mathscr S}$ is good for sharing \ldots but bad for encryption!

► G = (V, E) — hypothetical encryption graph E labeled with elements of K = {k₁,..., k₆}

• perfect encryption: $\forall i = 1..4, \Omega_i \text{ forms a cycle in } G$

 ${\mathscr S}$ is good for sharing \ldots but bad for encryption!

- ► G = (V, E) hypothetical encryption graph E labeled with elements of K = {k₁,..., k₆}
- perfect encryption:
 ∀i = 1..4, Ω_i forms a cycle in G
- will show:

for at least one S_i edges $E(S_i)$ do not form a cycle

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

(日) (日) (日) (日) (日) (日) (日) (日)

• assume for each S_i edges $E(S_i)$ forms a cycle

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ のへで

• assume for each S_i edges $E(S_i)$ forms a cycle

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

• assume for each S_i edges $E(S_i)$ forms a cycle

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

• assume for each S_i edges $E(S_i)$ forms a cycle

< ロ > < 同 > < 回 > < 回 >

$$(c_1=c_4 \oplus c_2=c_3)$$

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

• assume for each S_i edges $E(S_i)$ forms a cycle

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$(c_1=c_4 \oplus c_2=c_3)$$

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

• assume for each S_i edges $E(S_i)$ forms a cycle

 $(c_1 = c_4 \oplus c_2 = c_3)$ and $(c_1 = c_3 \oplus c_2 = c_4)$

 $S_1: \{k_1, k_2\}, S_2: \{k_3, k_4\}, S_3: \{k_1, k_3, k_5\}, S_4: \{k_1, k_4, k_6\}$

• assume for each S_i edges $E(S_i)$ forms a cycle

 $(c_1 = c_4 \oplus c_2 = c_3)$ and $(c_1 = c_3 \oplus c_2 = c_4)$

 \Rightarrow Contradiction!

• take Ω_i such that $E(S_i)$ don't form a cycle

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○

- take Ω_i such that $E(S_i)$ don't form a cycle
- since $|S_i| \leq 3$ we get

$$\frac{1}{2}\sum_{c\in\mathcal{C}}\left|\Pr_{k\in_{\Omega_i}\mathcal{K}}[\mathsf{Enc}_k(0)=c] - \Pr_{k\in_{\Omega_i}\mathcal{K}}[\mathsf{Enc}_k(1)=c]\right| \geq \frac{1}{3}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○

- take Ω_i such that $E(S_i)$ don't form a cycle
- since $|S_i| \leq 3$ we get

$$\frac{1}{2}\sum_{c\in\mathcal{C}}\left|\Pr_{k\in\Omega_{i}\mathcal{K}}[\mathsf{Enc}_{k}(0)=c]-\Pr_{k\in\Omega_{i}\mathcal{K}}[\mathsf{Enc}_{k}(1)=c]\right|\geq\frac{1}{3}$$

(日) (日) (日) (日) (日) (日) (日) (日)

• there is no δ -encryption for \mathscr{S} with $\delta < 1/3$.

- take Ω_i such that $E(S_i)$ don't form a cycle
- since $|S_i| \leq 3$ we get

$$\frac{1}{2}\sum_{c\in\mathcal{C}}\left|\Pr_{k\in\Omega_{i}\mathcal{K}}[\mathsf{Enc}_{k}(0)=c]-\Pr_{k\in\Omega_{i}\mathcal{K}}[\mathsf{Enc}_{k}(1)=c]\right|\geq\frac{1}{3}$$

(日) (日) (日) (日) (日) (日) (日) (日)

- ▶ there is no δ -encryption for $\mathscr S$ with $\delta < 1/3$.
- \Rightarrow Theorem holds also for high min-entropy sources.

2-2 Secret Sharing \rightarrow (1/2)-Encryption

Given

$$\mathsf{Share} \colon \mathcal{K} \times \mathcal{M} \to \mathcal{X}^2, \quad \mathsf{Rec} \colon \mathcal{X}^2 \to \mathcal{M}$$

let

$$(a_{m,k}, b_{m,k}) \leftarrow \text{Share}_k(m)$$
.

2-2 Secret Sharing \rightarrow (1/2)-Encryption

Given

$$\mathsf{Share} \colon \mathcal{K} imes \mathcal{M} o \mathcal{X}^2, \quad \mathsf{Rec} \colon \mathcal{X}^2 o \mathcal{M}$$

let

$$(a_{m,k}, b_{m,k}) \leftarrow \operatorname{Share}_k(m)$$
.

Define

$$\mathsf{Enc}_k(m) = egin{cases} a_{m,k} & ext{if } a_{0,k}
eq a_{1,k} \ b_{m,k} & ext{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some efficiency requirements:

(i) the secret sharing is **efficient**

Some efficiency requirements:

- (i) the secret sharing is efficient
- (ii) for every δ -encryption scheme the source contains an ${\it efficiently\ samplable}$ distribution breaking the encryption

Some efficiency requirements:

- (i) the secret sharing is **efficient**
- (ii) for every $\delta\text{-encryption}$ scheme the source contains an ${\it efficiently\ samplable}$ distribution breaking the encryption
- (iii) there exists an **efficient** algorithm breaking the encryption under distribution from (ii)

Some efficiency requirements:

- (i) the secret sharing is efficient
- (ii) for every $\delta\text{-encryption}$ scheme the source contains an ${\it efficiently\ samplable}$ distribution breaking the encryption
- (iii) there exists an **efficient** algorithm breaking the encryption under distribution from (ii)

(iv) distribution from (ii) can be found efficiently

Some efficiency requirements:

- (i) the secret sharing is efficient
- (ii) for every $\delta\text{-encryption}$ scheme the source contains an ${\it efficiently\ samplable}$ distribution breaking the encryption
- (iii) there exists an **efficient** algorithm breaking the encryption under distribution from (ii)
- (iv) distribution from (ii) can be found efficiently
 - \Rightarrow Can extend our separation to satisfy (i)-(iv) simultaneously!

Open problems

Separations for larger domains

 \Rightarrow open even for $\mathcal{M} = \{0, 1, 2\}!$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Open problems

Separations for larger domains

 \Rightarrow open even for $\mathcal{M} = \{0, 1, 2\}!$

- Sources for other cryptographic primitives
 - \Rightarrow position authentication wrt. encryption or sharing

Conclusions

Separation between 2-2 secret sharing and encryption

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conclusions

- Separation between 2-2 secret sharing and encryption
- ▶ ... but not as strong as between encryption and extraction.

Conclusions

- Separation between 2-2 secret sharing and encryption
- ▶ ... but not as strong as between encryption and extraction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Many interesting open problems.