International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

12 April 2024

Da Lin, Chunli Yang, Shengyuan Xu, Shizhu Tian, Bing Sun
ePrint Report ePrint Report
The substitution box (S-box) is often used as the only nonlinear component in symmetric-key ciphers, leading to a significant impact on the implementation performance of ciphers in both classical and quantum application scenarios by S-box circuits. Taking the Pauli-X gate, the CNOT gate, and the Toffoli gate (i.e., the NCT gate set) as the underlying logic gates, this work investigates the quantum circuit implementation of S-boxes based on the SAT solver. Firstly, we propose encoding methods of the logic gates and the NCT-based circuit, based on which we construct STP models for implementing S-boxes. By applying the proposed models to the S-boxes of several well-known cryptographic algorithms, we construct optimal implementations with different criteria for the 4-bit S-boxes and provide the implementation bounds of different criteria for the 5-bit S-boxes. Since S-boxes in the same affine equivalence class share most of the important properties, we then build STP models to further investigate optimizing S-box circuits based on affine equivalence. According to the applications, for almost all the tested 4-bit S-boxes, there always exists an equivalent S-box that can be implemented with half the number of logic gates. Besides, we encode some important cryptographic properties and construct STP models to design S-boxes with given criteria configurations on implementation and properties. As an application, we find an S-box with the same cryptographic properties as the S-box of KECCAK that can be implemented with only 5 NCT gates, even though the application of our models indicates that implementing the KECCAK S-box requires more than 9 NCT gates. Notably, the inputs of the proposed models are tweakable, which makes the models possess some functions not currently available in the public tools for constructing optimized NCT-based circuits for S-boxes.
Expand
Alexander May, Massimo Ostuzzi
ePrint Report ePrint Report
Let $\star: G \times X \rightarrow X$ be the action of a group $G$ of size $N=|G|$ on a set $X$. Let $y = g \star x \in X$ be a group action dlog instance, where our goal is to compute the unknown group element $g \in G$ from the known set elements $x,y \in X$. The Galbraith-Hess-Smart (GHS) collision finding algorithm solves the group action dlog in $N^{\frac 1 2}$ steps with polynomial memory. We show that group action dlogs are suitable for precomputation attacks. More precisely, for any $s,t$ our precomputation algorithm computes within $st$ steps a hint of space complexity $s$, which allows to solve any group action dlog in an online phase within $t$ steps. A typical instantiation is $s=t=N^{\frac 1 3}$, which gives precomputation time $N^{\frac 2 3}$ and space $N^{\frac 1 3}$, and online time only $N^{\frac 1 3}$.

Moreover, we show that solving multiple group action dlog instances $y_1, \ldots , y_m$ allows for speedups. Namely, our collision finding algorithm solves $m$ group action dlogs in $\sqrt{m}N^{\frac 1 2}$ steps, instead of the straight-forward $mN^{\frac 1 2}$ steps required for running $m$ times GHS. Interestingly, our multi instance algorithm (with precomputation) can be seen as a special case of our precomputation algorithm. Our multiple instance approach can be freely combined with our precomputations, allowing for a variety of tradeoffs.

Technically, our precomputation and multiple instance group action dlog attacks are adaptations of the techniques from the standard dlog setting in abelian groups. While such an adaptation seems natural, it is per se unclear which techniques transfer from the dlog to the more restricted group dlog setting, for which $X$ does not offer a group structure.

Our algorithms have direct implications for all group action based cryptosystems, such as CSIDH and its variants. We provide experimental evidence that our techniques work well in the CSIDH setting.
Expand
Xavier Bonnetain, Virginie Lallemand
ePrint Report ePrint Report
In this short note we review the technique proposed at ToSC 2018 by Sadeghi et al. for attacks built upon several related-tweakey impossible differential trails. We show that the initial encryption queries are improper and lead the authors to misevaluating a filtering value in the key recovery phase. We identified 4 papers (from Eurocrypt, DCC, ToSC and ePrint) that follow on the results of Sadeghi et al., and in three of them the issue was propagated. We thus present a careful analysis of these types of attacks and give generic complexity formulas similar to the ones proposed by Boura et al. at Asiacrypt 2014. We apply these to the aforementioned papers and provide patched versions of their attacks. The main consequence is an increase in the memory complexity. We show that in many cases (a notable exception being quantum impossible differentials) it is possible to recover the numeric estimates of the flawed analysis, and in all cases we were able to build a correct attack reaching the same number of rounds.
Expand
Harjasleen Malvai, Gregory Neven, Andrew Miller, Siam Hussain
ePrint Report ePrint Report
In this work-in-progress, we present a series of protocols to efficiently prove statements about strings in context-free grammars (CFGs). Our main protocol for proving proofs of correct parsing for strings in a CFG flexibly accommodates different instantiations of zero-knowledge proof systems as well as accumulation schemes. While improvements in the modular cryptographic primitives can be carried over for improvements in our protocols, even simpler proof systems, which do not support state-of-the-art techniques such as permutation checks can generate proofs of correct parsing of a string of size $n$ by proving the correctness of a circuit of size $\mathcal{O}(cn)$, where $c$ is the cost of verifying a set membership proof in the chosen accumulation scheme.
Expand
Farzin Renan, Péter Kutas
ePrint Report ePrint Report
Adaptor signatures can be viewed as a generalized form of the standard digital signature schemes where a secret randomness is hidden within a signature. Adaptor signatures are a recent cryptographic primitive and are becoming an important tool for blockchain applications such as cryptocurrencies to reduce on-chain costs, improve fungibility, and contribute to off-chain forms of payment in payment-channel networks, payment-channel hubs, and atomic swaps. However, currently used adaptor signature constructions are vulnerable to quantum adversaries due to Shor’s algorithm. In this work, we introduce SQIAsignHD, a new quantum-resistant adaptor signature scheme based on isogenies of supersingular elliptic curves, using SQIsignHD - as the underlying signature scheme - and exploiting the idea of the artificial orientation on the supersingular isogeny Diffie-Hellman key exchange protocol, SIDH, as the underlying hard relation. We, furthermore, show that our scheme is secure in the Quantum Random Oracle Model (QROM).
Expand
Robin Berger, Felix Dörre, Alexander Koch
ePrint Report ePrint Report
Running machine learning algorithms on encrypted data is a way forward to marry functionality needs common in industry with the important concerns for privacy when working with potentially sensitive data. While there is already a growing field on this topic and a variety of protocols, mostly employing fully homomorphic encryption or performing secure multiparty computation (MPC), we are the first to propose a protocol that makes use of a specialized encryption scheme that allows to do secure comparisons on ciphertexts and update these ciphertexts to be encryptions of the same plaintexts but under a new key. We call this notion Updatable Order-Revealing Encryption (uORE) and provide a secure construction using a key-homomorphic pseudorandom function. In a second step, we use this scheme to construct an efficient three-round protocol between two parties to compute a decision tree (or forest) on labeled data provided by both parties. The protocol is in the passively-secure setting and has some leakage on the data that arises from the comparison function on the ciphertexts. We motivate how our protocol can be compiled into an actively-secure protocol with less leakage using secure enclaves, in a graceful degradation manner, e.g. falling back to the uORE leakage, if the enclave becomes fully transparent. We also analyze the leakage of this approach, giving an upper bound on the leaked information. Analyzing the performance of our protocol shows that this approach allows us to be much more efficient (especially w.r.t. the number of rounds) than current MPC-based approaches, hence allowing for an interesting trade-off between security and performance.
Expand
Axel Mertens, Georgio Nicolas, Sergi Rovira
ePrint Report ePrint Report
Fully Homomorphic Encryption (FHE) is a powerful tool that brings privacy and security to all sorts of applications by allowing us to perform additions and multiplications directly on ciphertexts without the need of the secret key. Some applications of FHE that were previously overlooked but have recently been gaining traction are data compression and image processing. Practically, FHE enables applications such as private satellite searching, private object recognition, or even encrypted video editing.

We propose a practical FHE-friendly image compression and processing pipeline where an image can be compressed and encrypted on the client-side, sent to a server which decompresses it homomorphically and then performs image processing in the encrypted domain before returning the encrypted result to the client.

Inspired by JPEG, our pipeline also relies on discrete cosine transforms and quantization to simplify the representation of an image in the frequency domain, making it possible to effectively use a compression algorithm. This pipeline is designed to be compatible with existing image-processing techniques in FHE, such as pixel-wise processing and convolutional filters. Using this technique, a high-definition ($1024\times1024$) image can be homomorphically decompressed, processed with a convolutional filter and re-compressed in under $24.7$s, while using ~8GB memory.
Expand

11 April 2024

Luxembourg Institute of Science and Technology
Job Posting Job Posting
Temporary contract | 12 Months | Belval Are you passionate about research? So are we! Come and join us The Luxembourg Institute of Science and Technology (LIST) is a Research and Technology Organization (RTO) active in the fields of materials, environment and IT. Do you want to know more about LIST? Check our website: https://www.list.lu/ Discover our IT for Innovative Services department: https://www.list.lu/en/informatics/ How will you contribute? Your specific mission includes, but is not limited to, participating into the following activities along the project partners: • To analyze the security of wireless networks in dedicated scenarios, e.g., stage control in theatres. • To analyze the independences (security-oriented) between different services which use the same wireless network. • To prototype ML-based vulnerability and attack detection technologies for wireless networks. • To develop open-source software. • To validate the effectiveness of developed technologies. You are in charge of disseminating and promoting the research activities that will be carried out, whether through publications, prototype development or technical reports. You’re highly motivated and have proven skills in machine learning & cybersecurity to address the security concerns in wireless communication networks. You have already good experience in designing network intrusion detection solutions that use advanced machine learning techniques which can offer significant advantages over other methods. And last, but not least, you’re a great practitioner of cybersecurity technique benchmarking and testing in simulated environments. Is Your profile described below? Are you our future colleague? Apply now! As to join us, you: • Hold a PhD. degree in Computer Science or related disciplines • Have good programming skills (particularly experience on Python and C++) • Have good track record on wireless network security, such as vulnerability detection and anomaly detection in Wifi and Telecom netw

Closing date for applications:

Contact: Schwartz Cathy

More information: https://www.list.lu/en/jobs/

Expand
University of Bergen, Norway
Job Posting Job Posting
This postdoctoral position is for 3 years (with possible extension to up to 4 years) and is linked with a research effort aiming to apply cryptographic methods for studying the security aspects of Artificial Intelligence (AI). Cryptographic approaches will be tested for attacks on AI and existing protection methods in cryptography will be applied for security of AI. The candidate will have the freedom to explore new related topics and drive the research in the direction of security of AI and cryptographic elements. The postdoc will work with a team at the Selmer Center in Secure Communication, including among others Adj. Prof. Vincent Rijmen, Adj. Prof. Sondre Rønjom and Prof. Lilya Budaghyan.

Closing date for applications:

Contact: Prof. Budaghyan: lilya.budaghyan@uib.no

More information: https://www.jobbnorge.no/en/available-jobs/job/260444/lead-ai-postdoctoral-research-fellow-position-within-cryptography-and-security-of-ai

Expand
NXP Semiconductors GmbH Austria
Job Posting Job Posting

Ready to join the future of innovation in our team at NXP? We are expanding our Trust Provisioning Team at NXP Gratkorn!

Trust Provisioning is the secure creation, insertion, and distribution of confidential data and key material for chip personalization, including product configuration and development of software for underlying production flows.

Key Responsibilities:

  • Design and implementation of secure web services for key and data distribution
  • Design and implementation of unit and integration tests for automated test execution in CI/CD pipelines, including quality aspects
  • Contributing to architectural and security concepts to ensure end-to-end protection of sensitive key material and data

    Closing date for applications:

    Contact: Kerstin Krauss

    More information: https://nxp.wd3.myworkdayjobs.com/careers/job/Gratkorn/Secure-Web-Service-Java-Software-Engineer-for-Trust-Provisioning--m-f-d-_R-10051290

  • Expand
    IBM Research Zürich
    Job Posting Job Posting
    The IBM Zürich Research Lab invites applications for a PhD position in the area of Quantum-Safe Cryptography. The position is fully funded by SNF through the grant CryptonIs: Advanced Cryptography Based on Isogenies. The successful candidate will conduct research on cryptographic algorithms and schemes pertaining to the area of Isogeny-based Cryptography, a branch of Quantum-Safe Cryptography grounded in Number Theory and Arithmetic Geometry, under the supervision of Drs. Andrea Basso and Luca De Feo. They will join a diverse team of cryptographers working on all aspects of theoretical and applied cryptography. We are looking for candidates with an interest in the following topics Algorithmic Number Theory, Computational Algebraic Geometry, Cryptographic primitives and protocols, Cryptanalysis.

    Closing date for applications:

    Contact: Andrea Basso and Luca De Feo for questions. Apply online via the form at the given link. Only applications received before May 1st are guaranteed to be taken in consideration.

    More information: https://www.zurich.ibm.com/careers/2024_008.html

    Expand
    Universitat Autònoma de Barcelona
    Job Posting Job Posting

    We are pleased to announce an opportunity for a highly motivated individual to join our team at Universitat Autònoma de Barcelona as a Postdoctoral Researcher in Blockchain Technology. This position offers a unique chance to contribute to cutting-edge research and innovation in the field of distributed ledger technologies.

    Responsibilities:

    • Conducting original research in blockchain technology, with a focus on cryptographic protocols, consensus mechanisms, and scalability solutions.
    • Developing novel algorithms and protocols to address key challenges in blockchain scalability, security, and privacy.
    • Publishing high-quality research papers in top-tier conferences and journals.
    • Mentoring graduate students and contributing to academic initiatives within the department.

    Qualifications:

    • A Ph.D. in Computer Science, Mathematics, or a related field, with a strong publication record in blockchain or cryptography.
    • Expertise in cryptographic protocols and blockchain technology, with demonstrated proficiency in Python or Rust programming languages.
    • Familiarity with Solidity programming for smart contract development is highly desirable.
    • Strong analytical and problem-solving skills, with a passion for exploring new ideas and pushing the boundaries of research.
    • Excellent communication and collaboration abilities, with a track record of working effectively in multidisciplinary teams.

    This is a fixed-term position with a contract lasting until December 31, 2025.

    To apply, please submit the following documents to jordi.herrera@uab.cat with subject [Blockchain Postdoctoral Position] before May 2, 2024:

    • A detailed CV including a list of publications.
    • A cover letter describing your research interests, relevant experience, and career goals.
    • Contact information for at least three professional references.

    Closing date for applications:

    Contact: jordi.herrera@uab.cat

    Expand

    10 April 2024

    Damien Robissout, Lilian Bossuet, Amaury Habrard
    ePrint Report ePrint Report
    Side-channel analysis is an important part of the security evaluations of hardware components and more specifically of those that include cryptographic algorithms. Profiling attacks are among the most powerful attacks as they assume the attacker has access to a clone device of the one under attack. Using the clone device allows the attacker to make a profile of physical leakages linked to the execution of algorithms. This work focuses on the characteristics of this profile and the information that can be extracted from its application to the attack traces. More specifically, looking at unsuccessful attacks, it shows that by carefully ordering the attack traces used and limiting their number, better results can be achieved with the same profile. Using this method allows us to consider the classical attack method, i.e. where the traces are randomly ordered, as the worst case scenario. The best case scenario is when the attacker is able to successfully order and select the best attack traces. A method for identifying efficient ordering when using deep learning models as profiles is also provided. A new loss function "Scoring loss" is dedicated to training machine learning models that give a score to the attack prediction and the score can be used to order the predictions.
    Expand
    Charlotte Lefevre, Bart Mennink
    ePrint Report ePrint Report
    Hash chain based password systems are a useful way to guarantee authentication with one-time passwords. The core idea is specified in RFC 1760 as S/Key. At CCS 2017, Kogan et al. introduced T/Key, an improved password system where one-time passwords are only valid for a limited time period. They proved security of their construction in the random oracle model under a basic modeling of the adversary. In this work, we make various advances in the analysis and instantiation of hash chain based password systems. Firstly, we describe a slight generalization called U/Key that allows for more flexibility in the instantiation and analysis, and we develop a security model that refines the adversarial strength into offline and online complexity, that can be used beyond the random oracle model, and that allows to argue multi-user security directly. Secondly, we derive a new security proof of U/Key in the random oracle model, as well as dedicated and tighter security proofs of U/Key instantiated with a sponge construction and a truncated permutation. When applied to T/Key, these results improve significantly over the earlier results: whereas the originally suggested instantiation using SHA-256 achieved 128 bits of security using a hash function with a state size of 384 bits, with a truncated permutation construction one can achieve 128 bits of security already with a state size of 256 bits.
    Expand
    Leonie Reichert, Gowri R Chandran, Phillipp Schoppmann, Thomas Schneider, Björn Scheuermann
    ePrint Report ePrint Report
    Analyzing user data while protecting the privacy of individuals remains a big challenge. Trusted execution environments (TEEs) are a possible solution as they protect processes and Virtual Machines (VMs) against malicious hosts. However, TEEs can leak access patterns to code and to the data being processed. Furthermore, when data is stored in a TEE database, the data volume required to answer a query is another unwanted side channel that contains sensitive information. Both types of information leaks, access patterns and volume patterns, allow for database reconstruction attacks.

    In this paper, we present Menhir, an oblivious TEE database that hides access patterns with ORAM guarantees and volume patterns through differential privacy. The database allows range and point queries with SQL-like WHERE-clauses. It builds on the state-of-the-art oblivious AVL tree construction Oblix (S&P'18), which by itself does not protect against volume leakage. We show how volume leakage can be exploited in range queries and improve the construction to mitigate this type of attack. We prove the correctness and obliviousness of Menhir. Our evaluation shows that our approach is feasible and scales well with the number of rows and columns in the database.
    Expand
    Yilei Chen
    ePrint Report ePrint Report
    We show a polynomial time quantum algorithm for solving the learning with errors problem (LWE) with certain polynomial modulus-noise ratios. Combining with the reductions from lattice problems to LWE shown by Regev [J.ACM 2009], we obtain polynomial time quantum algorithms for solving the decisional shortest vector problem (GapSVP) and the shortest independent vector problem (SIVP) for all $n$-dimensional lattices within approximation factors of $\tilde{\Omega}(n^{4.5})$. Previously, no polynomial or even subexponential time quantum algorithms were known for solving GapSVP or SIVP for all lattices within any polynomial approximation factors.

    To develop a quantum algorithm for solving LWE, we mainly introduce two new techniques. First, we introduce Gaussian functions with complex variances in the design of quantum algorithms. In particular, we exploit the feature of the Karst wave in the discrete Fourier transform of complex Gaussian functions. Second, we use windowed quantum Fourier transform with complex Gaussian windows, which allows us to combine the information from both time and frequency domains. Using those techniques, we first convert the LWE instance into quantum states with purely imaginary Gaussian amplitudes, then convert purely imaginary Gaussian states into classical linear equations over the LWE secret and error terms, and finally solve the linear system of equations using Gaussian elimination. This gives a polynomial time quantum algorithm for solving LWE.
    Expand
    Alexander Hoover, Ruth Ng, Daren Khu, Yao'an Li, Joelle Lim, Derrick Ng, Jed Lim, Yiyang Song
    ePrint Report ePrint Report
    Structured Encryption (StE) enables a client to securely store and query data stored on an untrusted server. Recent constructions of StE have moved beyond basic queries, and now support large subsets of SQL. However, the security of these constructions is poorly understood, and no systematic analysis has been performed.

    We address this by providing the first leakage-abuse attacks against StE for SQL schemes. Our attacks can be run by a passive adversary on a server with access to some information about the distribution of underlying data, a common model in prior work. They achieve partial query recovery against select operations and partial plaintext recovery against join operations. We prove the optimality and near-optimality of two new attacks, in a Bayesian inference framework. We complement our theoretical results with an empirical investigation testing the performance of our attacks against real-world data and show they can successfully recover a substantial proportion of queries and plaintexts.

    In addition to our new attacks, we provide proofs showing that the conditional optimality of a previously proposed leakage-abuse attack and that inference against join operations is NP-hard in general.
    Expand
    Yuxi Xue, Xingye Lu, Man Ho Au, Chengru Zhang
    ePrint Report ePrint Report
    In this paper, we introduce a new framework for constructing linkable ring signatures (LRS). Our framework is based purely on signatures of knowledge (SoK) which allows one to issue signatures on behalf of any NP-statement using the corresponding witness. Our framework enjoys the following advantages: (1) the security of the resulting LRS depends only on the security of the underlying SoK; (2) the resulting LRS naturally supports online/offline signing (resp. verification), where the output of the offline signing (resp. verification) can be re-used across signatures of the same ring. For a ring size $n$, our framework requires a SoK of the NP statement with size $\log n$.

    To instantiate our framework, we adapt the well-known post-quantum secure non-interactive argument of knowledge (NIAoK), ethSTARK, into an SoK. This SoK inherents the post-quantum security and has a signature size poly-logarithmic in the size of the NP statement. Thus, our resulting LRS has a signature size of $O(\text{polylog}(\log n))$. By comparison, existing post-quantum ring signatures, regardless of linkability considerations, have signature sizes of $O(\log n)$ at best. Furthermore, leveraging online/offline verification, part of the verification of signatures on the same ring can be shared, resulting in a state-of-the-art amortized verification cost of $O(\text{polylog}(\log n))$.

    Our LRS also performs favourably against existing schemes in practical scenarios. Concretely, our scheme has the smallest signature size among all post-quantum ring signatures for any ring size larger than $32$. In our experiment, at $128$-bit security and ring size of $1024$, our LRS has a size of $29$KB, and an amortized verification cost of $0.3$ ms, surpassing the state-of-the-art by a significant margin. Even without considering amortization, the verification time for a single signature is $128$ ms, which is still 10x better than state-of-the-art succinct construction, marking it comparable to those featuring linear signature size. A similar performance advantage can also be seen at signing.
    Expand
    Mario Yaksetig
    ePrint Report ePrint Report
    This paper presents an in-depth exploration of the development and deployment of a Layer 1 (L1) blockchain designed to underpin metaverse experiences. As the digital and physical realms become increasingly intertwined, the metaverse emerges as a frontier for innovation, demanding robust, scalable, and secure infrastructure. The core of our investigation centers around the challenges and insights gained from constructing a blockchain framework capable of supporting the vast, dynamic environments of the metaverse. Through the development process, we identified key areas of focus: interoperability, performance and scalability, cost, identity, privacy, security, and accessibility.

    Our findings indicate that most challenges can be effectively addressed through the implementation of cryptography and subnets (i.e., Avalanche architecture), which allow for segmented, optimized environments within the broader metaverse ecosystem. This approach not only enhances performance but also provides a flexible framework for managing the diverse needs of metaverse applications.
    Expand
    Nimish Mishra, Debdeep Mukhopadhyay
    ePrint Report ePrint Report
    Fault attacks that exploit the propagation of effective/ineffective faults present a richer attack surface than Differential Fault Attacks, in the sense that the adversary depends on a single bit of information to eventually leak secret cryptographic material. In the recent past, a number of propagation-based fault attacks on Lattice-based Key Encapsulation Mechanisms have been proposed; many of which have no known countermeasures. In this work, we propose an orthogonal countermeasure principle that does not follow adhoc strategies (like shuffling operations on secret coefficients), but rather depends on cryptographically-backed guarantees to provide quantifiable defence against aforementioned fault attacks. Concretely, we propose a framework that uses rejection sampling (which has been traditionally used as alternatives to trapdoors) to convert otherwise deterministic algorithms to probabilistic ones. Our specific goals allow careful selection of distributions such that our framework functions with a constant number of retries (around $2-3$) for unfaulted executions. In other words, should a fault be injected, the probability of success is negligible; for correct execution however, the probability of success is overwhelmingly high. Using our framework, we hence enable probabilistic decryptions in Kyber, NewHope, and Masked Kyber, and completely cut-off fault propagation in known attacks on these constructions, allowing a sound defence against known fault attacks in literature.
    Expand
    ◄ Previous Next ►