23 March 2025
Alessandro Chiesa, Michele Orrù
In this paper we propose and analyze a variant of the Fiat-Shamir transformation that is based on an ideal permutation of fixed size. The transformation relies on the popular duplex sponge paradigm, and minimizes the number of calls to the permutation (given the amount of information to absorb and to squeeze). Our variant closely models deployed variants of the Fiat-Shamir transformation, and our analysis provides concrete security bounds that can be used to set security parameters in practice.
We additionally contribute spongefish, an open-source Rust library implementing our Fiat-Shamir transformation. The library is interoperable across multiple cryptographic frameworks, and works with any choice of permutation. The library comes equipped with Keccak and Poseidon permutations, as well as several "codecs" for re-mapping prover and verifier messages to the permutation's domain.
Tiancheng Xie, Tao Lu, Zhiyong Fang, Siqi Wang, Zhenfei Zhang, Yongzheng Jia, Dawn Song, Jiaheng Zhang
In this paper, we introduce ZKPyTorch, a compiler that seamlessly integrates ML frameworks like PyTorch with ZKP engines like Expander, simplifying the development of ZKML. ZKPyTorch automates the translation of ML operations into optimized ZKP circuits through three key components. First, a ZKP preprocessor converts models into structured computational graphs and injects necessary auxiliary information to facilitate proof generation. Second, a ZKP-friendly quantization module introduces an optimized quantization strategy that reduces computation bit-widths, enabling efficient ZKP execution within smaller finite fields such as M61. Third, a hierarchical ZKP circuit optimizer employs a multi-level optimization framework at model, operation, and circuit levels to improve proof generation efficiency.
We demonstrate ZKPyTorch effectiveness through end-to-end case studies, successfully converting VGG-16 and Llama-3 models from PyTorch, a leading ML framework, into ZKP-compatible circuits recognizable by Expander, a state-of-the-art ZKP engine. Using Expander, we generate zero-knowledge proofs for these models, achieving proof generation for the VGG-16 model in 2.2 seconds per CIFAR-10 image for VGG-16 and 150 seconds per token for Llama-3 inference, improving the practical adoption of ZKML.
Pengfei Zhu
Mengling Liu, Yang Heng, Xingye Lu, Man Ho Au
Boris Alexeev, Colin Percival, Yan X Zhang
Axel Lemoine, Rocco Mora, Jean-Pierre Tillich
Ramses Fernandez
Zhengjun Cao, Lihua Liu
Yue Zhou, Sid Chi-Kin Chau
Daniel Aronoff, Adithya Bhat, Panagiotis Chatzigiannis, Mohsen Minaei, Srinivasan Raghuraman, Robert M. Townsend, Nicolas Xuan-Yi Zhang
To address these privacy concerns, there is a pressing need for privacy-preserving mechanisms in smart contracts. To showcase this need even further, in our paper we bring forward advanced use-cases in economics which only smart contracts equipped with privacy mechanisms can realize, and show how fully-homomorphic encryption (FHE) as a privacy enhancing technology (PET) in smart contracts, operating on a public blockchain, can make possible the implementation of these use-cases. Furthermore, we perform a comprehensive systematization of FHE-based approaches in smart contracts, examining their potential to maintain the confidentiality of sensitive information while retaining the benefits of smart contracts, such as automation, decentralization, and security. After we evaluate these existing FHE solutions in the context of the use-cases we consider, we identify open problems, and suggest future research directions to enhance privacy in blockchain smart contracts.
Indian Institute of Technology Guwahati, India, 16 December - 19 December 2025
Aarhus, Denmark, 2 December - 5 December 2025
Kuala Lumpur, Malesia, 14 September 2025
Yokohama, Japan, 10 October - 12 October 2025
Submission deadline: 31 May 2025
Notification: 15 July 2025
22 March 2025
Input-Output Group - remoe
As an Applied Cryptography Researcher, you must be a cryptographer with a strong understanding of practical aspects of using cryptography in real world settings. You have the exciting challenge of working on bleeding-edge research and technology, always with a focus on the market's needs. You will work side by side with architects and engineers implementing novel cryptographic primitives that you may have also designed yourself. The scope is everything from Post-Quantum prototypes to hand-optimisation of existing primitives to completely new systems. To support you on this challenge, we have cryptography researchers, software architects, product managers, project managers, formal methods specialists and QA test engineers, with whom you will have high bandwidth communications.
Who you are:
PhD in Computer Science/Engineering or Applied Mathematics. A minimum of 4-5 years development experience in the field Expert knowledge of applied cryptography & best practices Expert knowledge of ZK protocols, such as PlonK and IPA commitment scheme Expert knowledge of elliptic curve cryptography Expert knowledge of post quantum security techniques Familiarity with blockchain cryptography and constructions Practical experience with implementation of cryptographic primitives Expert in terms of cryptographic design Good understanding of implementation and engineering constraints. Security sensibility related to cryptographic implementation Excellent theoretical cryptography and mathematical knowledge
Closing date for applications:
Contact: Marios Nicolaides
More information: https://apply.workable.com/io-global/j/DE859C73F4/
University of South Florida, Tampa, Florida
This is an urgent call for interested applicants. A funded Ph.D. student position is available for Fall 2025 to work on different aspects of Cryptographic Engineering in the new Bellini College of Artificial Intelligence, Cybersecurity, and Computing with Dr. Mehran Mozaffari Kermani. We are looking for motivated, talented, and hardworking applicants who have background and are interested in working on different aspects of Cryptographic Engineering with emphasis on hardware/software implementation, and side-channel attacks.
Please send email me your updated CV (including list of publications, language test marks, and references), transcripts for B.Sc. and M.Sc., and a statement of interest to: mehran2 (at) usf.edu as soon as possible.
Research Webpage: https://cse.usf.edu/~mehran2/
Closing date for applications:
Contact: Mehran Mozaffari Kermani
Mid Sweden University, Deptartment of Computer and Electrical Engineering, Sundsvall, Sweden
Closing date for applications:
Contact: Mikael Gidlund https://www.miun.se/en/personnel/g/mikaelgidlund/
More information: https://www.miun.se/en/work-at-the-university/career/jobs/vacancy/postdoctoral-researcher-in-wireless--network-security-and-trustworthy-ai/#gsc.tab=0
Tenure-Track Faculty in all areas related to Information Security and Artificial Intelligence (f/m/d
CISPA Helmholtz Center for Information Security
All applicants are expected to grow a research team that pursues an internationally visible research agenda. To aid you in achieving this, CISPA provides institutional base funding for three full-time researcher positions and a generous budget for expenditures. Upon successful tenure evaluation, you will hold a position that is equivalent to an endowed full professorship at a top research university.
In view of the current geopolitical landscape and in order to further strengthen research in information security and trustworthy AI in Germany and Europe, we have decided to invite a further round of applications of renowned candidates with an outstanding track record in Information Security, Artificial Intelligence, or related areas, including Cybersecurity and Privacy, Machine Learning and Data Science, Efficient Algorithms and Foundations of Theoretical Computer Science, Software Engineering, Program Analysis and Formal Methods.
The application deadline is April 8, 2025 23:59 AoE with interviews starting in mid April 2025.
CISPA values diversity and is committed to equality. We provide special dual-career support. We explicitly encourage female and diverse researchers to apply.
Closing date for applications:
Contact: career@cispa.de
21 March 2025
TU Wien, Department of Computer Science, Vienna
Tasks: Deep interest in scientific problems and the motivation for independent and goal-oriented research Independent teaching or participation in teaching and supervision of students Participation in organizational and administrative tasks of the research division and the faculty
Your profile: - Completion of an excellent doctorate in Computer Science or a closely related field
-Strong background in cryptography, privacy-preserving mechanisms, or data security
- In-depth knowledge and experience in at least one subject area: secure computation, differential privacy, anonymous communication systems, privacy-preserving machine learning, cryptocurrencies, cryptographic protocols, identity management, homomorphic encryption, or zero-knowledge proofs
An outstanding publication record in top security, privacy, and applied cryptography conferences and journals, such as e.g., ACM CCS, Crypto, Eurocrypt, Usenix Security, NDSS, EEE S&P, PETS Experience in teaching and supervising students, with enthusiasm for advancing knowledge in the field of privacy-enhancing technologies Excellent organizational and analytical skills, combined with a structured and detail-oriented approach to work Team player with strong problem-solving abilities, creative thinking, and a passion for tackling real-world privacy challenges
Closing date for applications:
Contact: Univ. Prof. Dr. Dominique Schroeder
More information: https://jobs.tuwien.ac.at/Job/247325