International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

23 June 2022

Ittai Abraham, Danny Dolev, Alon Kagan, Gilad Stern
ePrint Report ePrint Report
Protocols solving authenticated consensus in synchronous networks with Byzantine faults have been widely researched and known to exists if and only if $n>2f$ for $f$ Byzantine faults. Similarly, protocols solving authenticated consensus in partially synchronous networks are known to exist if $n>3f+2k$ for $f$ Byzantine faults and $k$ crash faults. In this work we fill a natural gap in our knowledge by presenting MixSync, an authenticated consensus protocol in synchronous networks resilient to $f$ Byzantine faults and $k$ crash faults if $n>2f+k$. As a basic building block, we first define and then construct a publicly verifiable crusader agreement protocol with the same resilience. The protocol uses a simple double-send round to guarantee non-equivocation, a technique later used in the MixSync protocol. We then discuss how to construct a state machine replication protocol using these ideas, and how they can be used in general to make such protocols resilient to crash faults. Finally, we prove lower bounds showing that $n>2f+k$ is optimally resilient for consensus and state machine replication protocols.
Expand
Alex Charlès, Chloé Gravouil
ePrint Report ePrint Report
One of the main challenges cryptography needs to deal with is balancing the performances of a cryptographic primitive with its security. That is why in 2015, the National Institute of Standards and Technologies (NIST) has begun a standardization process to solicit the creation of new lightweight cryptographic algorithms. We then wondered which of this standardization finalists would suit the best to a white-box implementation. To this end, we studied different algorithms structures on their encodability to later develop our white-box encoding solution. Afterwards, we reviewed the standardization finalists on the applicability of our solution to those algorithms, and finally apply it to GIFT, the permutation of GIFT-COFB.
Expand
Xavier Arnal, Tamara Finogina, Javier Herranz
ePrint Report ePrint Report
Interactive zero-knowledge systems are a very important cryptographic primitive, used in many applications, especially when non-transferability is desired. In the setting of lattice-based cryptography, the currently most efficient interactive zero-knowledge systems employ the technique of rejection sampling, which implies that the interaction does not always finish correctly in the first execution; the whole interaction must be re-run until abort does not happen.

While aborts and repetitions are acceptable in theory, in some practical applications of such interactive systems it is desirable to avoid re-runs, for usability reasons. In this work, we present a generic transformation that departs from an interactive zero-knowledge system (maybe with aborts) and obtains a 3-moves zero-knowledge system (without aborts). The transformation combines the well-known Fiat-Shamir technique with a couple of initially exchanged messages. %, needed to get the (honest-verifier) zero-knowledge property. The resulting 3-moves system enjoys (honest-verifier) zero-knowledge and soundness, in the random oracle model. We finish the work by showing some practical scenarios where our transformation can be useful.
Expand
Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando Krell, Philippe Camacho
ePrint Report ePrint Report
Traditional blockchain systems execute program state transitions on-chain, requiring each network node participating in state-machine replication to re-compute every step of the program when validating transactions. This limits both scalability and privacy. Recently, Bowe et al. introduced a primitive called decentralized private computation (DPC) and provided an instantiation called ZEXE, which allows users to execute arbitrary computations off-chain without revealing the program logic to the network. Moreover, transaction validation takes only constant time, independent of the off-chain computation. However, ZEXE required a separate trusted setup for each application, which is highly impractical. Prior attempts to remove this per-application setup incurred significant performance loss. We propose a new DPC instantiation VERI-ZEXE that is highly efficient and requires only a single universal setup to support an arbitrary number of applications. Our benchmark improves the state-of-the-art by 9x in transaction generation time and by 2.6x in memory usage. Along the way, we also design efficient gadgets for variable-base multi-scalar multiplication and modular arithmetic within the plonk constraint system, leading to a Plonk verifier gadget using only ∼ 21k plonk constraints.
Expand
Hadi Mardani Kamali
ePrint Report ePrint Report
Having access to the scan chain of Integrated Circuits (ICs) is an integral requirement of the debug/testability process within the supply chain. However, the access to the scan chain raises big concerns regarding the security of the chip, particularly when the secret information, such as the key of logic obfuscation, is embedded/stored inside the chip. Hence, to relieve such concerns, numerous secure scan chain architectures have been proposed in the literature to show not only how to prevent any unauthorized access to the scan chain but also how to keep the availability of the scan chain for debug/testability. In this paper, we first provide a holistic overview of all secure scan chain architectures. Then, we discuss the key leakage possibility and some substantial architectural drawbacks that moderately affect both test flow and design constraints in the state-of-the-art published design-for-security (DFS) architectures. Then, we propose a new key-trapped DFS (kt-DFS) architecture for building a secure scan chain architecture while addressing the potential of key leakage. The proposed kt-DFS architecture allows the designer to perform the structural test with no limitation, enabling an untrusted foundry to utilize the scan chain for manufacturing fault testing without needing to access the scan chain. Finally, we evaluate and compare the proposed architecture with state-of-the-art ones in terms of security, testability time and complexity, and area/power/delay overhead.
Expand
Sameer Wagh
ePrint Report ePrint Report
Recent advances in function secret sharing (FSS) have led to new possibilities in multi-party computation in the pre-processing model. Silent Pseudorandom Correlation Generators (Crypto '19, CCS '19, CCS '19, CCS '20) have demonstrated the ability to generate large quantities of pre-processing material such as oblivious transfers and Beaver triples through a non-interactive offline phase (with an initial set-up). However, there has been limited protocols for pre-processing material such as doubly authenticated bits (daBits, IndoCrypt'19) and extended doubly authenticated bits (edaBits, Crypto '20) which are critical for state-of-the-art secure comparison protocols over arithmetic secret sharing.

In this work, we propose new protocols in a 3-party computation model for these two cryptographic primitives -- daBits and edaBits. We explore how advances in silent PCGs can be used to construct efficient protocols for daBits and edaBits. Our protocols are secure against a single corruption in both the semi-honest and malicious security models. Our contributions can be summarized as follows:

(1) New constant round protocols for generating daBits and edaBits. We achieve this by constructing an efficient 3-party oblivious transfer protocol (using just 2 rounds of computation) and using it to build efficient protocols for daBit and edaBit generation. (2) We extend the above semi-honest protocol to achieve malicious security against an honest majority. We use a standard cut-and-choose approach for this. This improves the round complexity of prior edaBit protocols from O(log2 l) to a constant, where l is the bit-length of the inputs. (3) Finally, to understand when the above protocols provide concrete efficiency, we implement and benchmark the performance of our protocols against state-of-the-art implementation of these primitives in MP-SDPZ. Our protocols improve the throughput of daBit generation by up to 10x in the LAN setting and 5x in the WAN setting. Comparing the performance of edaBit generation, our protocols achieve 4x higher throughput in the LAN setting and 32x higher throughput in the WAN setting.

It is known that silent PCGs are compute intense and thus the performance of these new protocols can further be improved using works such as CryptGPU (S\&P '21), Piranha (USENIX '22) that significantly improve the local computation in MPC protocols.
Expand

21 June 2022

Vipul Goyal, Yuval Ishai, Yifan Song
ePrint Report ePrint Report
We revisit the question of minimizing the randomness complexity of protocols for secure multiparty computation (MPC) in the setting of perfect information-theoretic security. Kushilevitz and Mansour (SIAM J. Discret. Math., 1997) studied the case of $n$-party semi-honest MPC for the XOR function with security threshold $t
We essentially close the question by proving an $\Omega(t^2)$ lower bound on the randomness complexity of XOR, matching the previous upper bound up to a logarithmic factor (or constant factor when $t=\Omega(n)$). We also obtain an explicit protocol that uses $O(t^2\cdot\log^2n)$ random bits, matching our lower bound up to a polylogarithmic factor. We extend these results from XOR to general symmetric Boolean functions and to addition over a finite Abelian group, showing how to amortize the randomness complexity over multiple additions.

Finally, combining our techniques with recent randomness-efficient constructions of private circuits, we obtain an explicit protocol for evaluating a general circuit $C$ using only $O(t^2\cdot\log |C|)$ random bits, by employing additional ``helper parties'' who do not contribute any inputs. This upper bound too matches our lower bound up to a logarithmic factor.
Expand
David Heath, Vladimir Kolesnikov
ePrint Report ePrint Report
Garbled Circuit (GC) is the main practical 2PC technique, yet despite great interest in its performance, GC notoriously resists improvement. Essentially, we only know how to evaluate GC functions gate-by-gate using encrypted truth tables; given input labels, the GC evaluator decrypts the corresponding output label.

Interactive protocols enjoy more sophisticated techniques. For example, we can expose to a party a (masked) private value. The party can then perform useful local computation and feed the resulting cleartext value back into the MPC. Such techniques are not known to work for GC.

We show that it is, in fact, possible to improve GC efficiency, while keeping its round complexity, by exposing masked private values to the evaluator. Our improvements use garbled one-hot encodings of values. By using this encoding we improve a number of interesting functions, e.g., matrix multiplication, integer multiplication, field element multiplication, field inverses and AES S-Boxes, integer exponents, and more. We systematize our approach by providing a framework for designing such GC modules.

Our constructions are concretely efficient. E.g., we improve binary matrix multiplication inside GC by more than $6\times$ in terms of communication and by more than $4\times$ in terms of WAN wall-clock time.

Our improvement circumvents an important GC lower bound and may open GC to further improvement.
Expand

20 June 2022

Abida Haque, David Heath, Vladimir Kolesnikov, Steve Lu, Rafail Ostrovsky, Akash Shah
ePrint Report ePrint Report
Arecentlineofwork, Stacked Garbled Circuit(SGC), showed that Garbled Circuit (GC) can be improved for functions that include conditional behavior. SGC relieves the communication bottleneck of 2PC by only sending enough garbled material for a single branch out of the b total branches. Hence, communication is sublinear in the circuit size. However, both the evaluator and the generator pay in computation and perform at least factor $\log b$ extra work as compared to standard GC.

We extend the sublinearity of SGC to also include the work performed by the GC evaluator E; thus we achieve a fully sublinear E, which is essential when optimizing for the online phase. We formalize our approach as a garbling scheme called GCWise: GC WIth Sublinear Evaluator.

We show one attractive and immediate application, Garbled PIR, a primitive that marries GC with Private Information Retrieval. Garbled PIR allows the GC to non-interactively and sublinearly access a privately indexed element from a publicly known database, and then use this element in continued GC evaluation.
Expand
Youer Pu, Lorenzo Alvisi, Ittay Eyal
ePrint Report ePrint Report
Nakamoto's consensus protocol works in a permissionless model, where nodes can join and leave without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a necessary concession to the severe demands of supporting a permissionless model? This paper shows that, at least in a benign failure model, it is not. It presents Sandglass, the first permissionless consensus algorithm that guarantees deterministic agreement and termination with probability 1 under general omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous communication model, where, at all times, a majority of nodes (though their number is unknown) are correct and synchronously connected, and allows nodes to join and leave at any time.
Expand
David Heath, Vladimir Kolesnikov, Jiahui Lu
ePrint Report ePrint Report
Katz et al., CCS 2018 (KKW) is a popular and efficient MPC-in-the-head non-interactive ZKP (NIZK) scheme, which is the technical core of the post-quantum signature scheme Picnic, currently considered for standardization by NIST. The KKW approach simultaneously is concretely efficient, even on commodity hardware, and does not rely on trusted setup. Importantly, the approach scales linearly in the circuit size with low constants with respect to proof generation time, proof verification time, proof size, and RAM consumption. However, KKW works with Boolean circuits only and hence incurs significant cost for circuits that include arithmetic operations.

In this work, we extend KKW with a suite of efficient arithmetic operations over arbitrary rings and Boolean conversions. Rings $\mathbb{Z}_{2^k}$ are important for NIZK as they naturally match the basic operations of modern programs and CPUs. In particular, we: * present a suitable ring representation consistent with KKW, * construct efficient conversion operators that translate between arith- metic and Boolean representations, and * demonstrate how to efficiently operate over the arithmetic representation, including a vector dot product of length-n vectors with cost equal to that of a single multiplication. These improvements substantially improve KKW for circuits with arithmetic. As one example, we can multiply 100 × 100 square matrices of 32-bit numbers using a 3200x smaller proof size than standard KKW (100x improvement from our dot product construction and 32x from moving to an arithmetic representation).

We discuss in detail proof size and resource consumption and argue the practicality of running large proofs on commodity hardware.
Expand
Dmitrii Koshelev
ePrint Report ePrint Report
This article develops a novel method of generating ``independent'' points on an ordinary elliptic curve $E$ over a finite field. Such points are actively used in the Pedersen vector commitment scheme and its modifications. In particular, the new approach is relevant for Pasta curves (of $j$-invariant $0$), which are very popular in the given type of elliptic cryptography. These curves are defined over highly $2$-adic fields, hence successive generation of points via a hash function to $E$ is an expensive solution. Our method also satisfies the NUMS (Nothing Up My Sleeve) principle, but it works faster on average. More precisely, instead of finding each point separately in constant time, we suggest to sample several points at once with some probability.
Expand
Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, Divya Gupta
ePrint Report ePrint Report
Secure machine learning (ML) inference can provide meaningful privacy guarantees to both the client (holding sensitive input) and the server (holding sensitive weights of the ML model) while realizing inference-as-a-service. Although many specialized protocols exist for this task, including those in the preprocessing model (where a majority of the overheads are moved to an input independent offline phase), they all still suffer from large online complexity. Specifically, the protocol phase that executes once the parties know their inputs, has high communication, round complexity, and latency. Function Secret Sharing (FSS) based techniques offer an attractive solution to this in the trusted dealer model (where a dealer provides input independent correlated randomness to both parties), and 2PC protocols obtained based on these techniques have a very lightweight online phase. Unfortunately, current FSS-based 2PC works (AriaNN, PoPETS 2022; Boyle et al. Eurocrypt 2021; Boyle et al. TCC 2019) fall short of providing a complete solution to secure inference. First, they lack support for math functions (e.g., sigmoid, and reciprocal square root) and hence, are insufficient for a large class of inference algorithms (e.g. recurrent neural networks). Second, they restrict all values in the computation to be of the same bitwidth and this prevents them from benefitting from efficient float-to-fixed converters such as Tensorflow Lite that crucially use low bitwidth representations and mixed bitwidth arithmetic. In this work, we present LLAMA -- an end-to-end, FSS based, secure inference library supporting precise low bitwidth computations (required by converters) as well as provably precise math functions; thus, overcoming all the drawbacks listed above. We perform an extensive evaluation of LLAMA and show that when compared with non-FSS based libraries supporting mixed bitwidth arithmetic and math functions (SIRNN, IEEE S&P 2021), it has at least an order of magnitude lower communication, rounds, and runtimes. We integrate LLAMA with the EzPC framework (IEEE EuroS&P 2019) and demonstrate its robustness by evaluating it on large benchmarks (such as ResNet-50 on the ImageNet dataset) as well as on benchmarks considered in AriaNN -- here too LLAMA outperforms prior work.
Expand
Chunfu Jia, Shaoqiang Wu, Ding Wang
ePrint Report ePrint Report
As the most dominant authentication mechanism, password-based authentication suffers catastrophic offline password guessing attacks once the authentication server is compromised and the password database is leaked. Password hardening (PH) service, an external/third-party crypto service, has been recently proposed to strengthen password storage and reduce the damage of authentication server compromise. However, all existing schemes are unreliable because they overlook the important restorable property: PH service opt-out. In existing PH schemes, once the authentication server has subscribed to a PH service, it must adopt this service forever, even if it wants to stop the external/third-party PH service and restore its original password storage (or subscribe to another PH service).

To fill the gap, we propose a new PH service called PW-Hero that equips its PH service with an option to terminate its use (i.e., opt-out). In PW-Hero, password authentication is strengthened against offline attacks by adding external secret spices to password records. With the opt-out property, authentication servers can proactively request to end the PH service after successful authentications. Then password records can be securely migrated to their traditional salted hash state, ready for subscription to other PH services. Besides, PW-Hero achieves all existing desirable properties, such as comprehensive verifiability, rate limits against online attacks, and user privacy. We define PW-Hero as a suite of protocols that meet desirable properties and build a simple, secure, and efficient instance. Moreover, we develop a prototype implementation and evaluate its performance, which shows the practicality of our PW-Hero service.
Expand
Ilan Komargodski, Shin’ichiro Matsuo, Elaine Shi, Ke Wu
ePrint Report ePrint Report
It is well-known that in the presence of majority coalitions, strongly fair coin toss is impossible. A line of recent works have shown that by relaxing the fairness notion to game theoretic, we can overcome this classical lower bound. In particular, Chung et al. (CRYPTO'21) showed how to achieve approximately (game-theoretically) fair leader election in the presence of majority coalitions, with round complexity as small as $O(\log \log n)$ rounds.

In this paper, we revisit the round complexity of game-theoretically fair leader election. We construct $O(\log^* n)$ rounds leader election protocols that achieve $(1-o(1))$-approximate fairness in the presence of $(1-o(1)) n$-sized coalitions. Our protocols achieve the same round-fairness trade-offs as Chung et al.'s and have the advantage of being conceptually simpler. Finally, we also obtain game-theoretically fair protocols for committee election which might be of independent interest.
Expand
Gal Arnon, Amey Bhangale, Alessandro Chiesa, Eylon Yogev
ePrint Report ePrint Report
Interactive oracle proofs (IOPs) are a proof system model that combines features of interactive proofs (IPs) and probabilistically checkable proofs (PCPs). IOPs have prominent applications in complexity theory and cryptography, most notably to constructing succinct arguments.

In this work, we study the limitations of IOPs, as well as their relation to those of PCPs. We present a versatile toolbox of IOP-to-IOP transformations containing tools for: (i) length and round reduction; (ii) improving completeness; and (iii) derandomization.

We use this toolbox to establish several barriers for IOPs:

-- Low-error IOPs can be transformed into low-error PCPs. In other words, interaction can be used to construct low-error PCPs; alternatively, low-error IOPs are as hard to construct as low-error PCPs. This relates IOPs to PCPs in the regime of the sliding scale conjecture for inverse-polynomial soundness error. -- Limitations of quasilinear-size IOPs for 3SAT with small soundness error. -- Limitations of IOPs where query complexity is much smaller than round complexity. -- Limitations of binary-alphabet constant-query IOPs.

We believe that our toolbox will prove useful to establish additional barriers beyond our work.
Expand
Lingyue Qin, Xiaoyang Dong, Anyu Wang, Jialiang Hua, Xiaoyun Wang
ePrint Report ePrint Report
Designing symmetric ciphers for particular applications becomes a hot topic. At EUROCRYPT 2020, Naito, Sasaki and Sugawara invented the threshold implementation friendly cipher SKINNYe-64-256 to meet the requirement of the authenticated encryption PFB_Plus. Soon, Thomas Peyrin pointed out that SKINNYe-64-256 may lose the security expectation due the new tweakey schedule. Although the security issue of SKINNYe-64-256 is still unclear, Naito et al. decided to introduce SKINNYe-64-256 v2 as a response.

In this paper, we give a formal cryptanalysis on the new tweakey schedule of SKINNYe-64-256 and discover unexpected differential cancellations in the tweakey schedule. For example, we find the number of cancellations can be up to 8 within 30 consecutive rounds, which is significantly larger than the expected 3 cancellations. Moreover, we take our new discoveries into rectangle, MITM and impossible differential attacks, and adapt the corresponding automatic tools with new constraints from our discoveries. Finally, we find a 41-round related-tweakey rectangle attack on SKINNYe-64-256 and leave a security margin of 3 rounds only.

As STK accepts arbitrary tweakey size, but SKINNYe-64-256 and SKINNYe-64-256 v2 only support up to 4n tweakey size. We introduce a new design of tweakey schedule for SKINNY-64 to further extend the supported tweakey size. We give a formal proof that our new tweakey schedule inherits the security requirement of STK and Skinny.
Expand
Le He, Xiaoen Lin, Hongbo Yu
ePrint Report ePrint Report
This paper provides improved preimage analysis on round-reduced Keccak-384/512. Unlike low-capacity versions, Keccak-384/512 outputs from two planes of its inner state: an entire 320-bit plane and a second plane containing 64/192 bits. Due to lack of degrees of freedom, most existing preimage analysis can only control the 320-bit plane and cannot achieve good results. In this paper, we find out a method to construct linear relations between corresponding bits from the two planes, which means attacker can control two output planes simultaneously with degrees of freedom much less than 320. Besides, we design several linear structures for each different version with additional restrictions that can leave more degrees of freedom. As a result, the complexity of preimage attacks on 2-round Keccak-384/512 and 3-round Keccak-384/512 can be decreased to $2^{28}$/$2^{252}$ and $2^{271}$/$2^{426}$ respectively, which are all the best known results so far. To support the analysis, this paper also provides the first preimage of all `0' digest for 2-round Keccak-384, which can be obtained in hours level by a personal computer. It is worth noting that although our structures contain non-linear parts, the attack algorithms only involve the solution of linear equation systems.
Expand
Muhammad Fahad Khan, Khalid Saleem, Tariq Shah, Mohmmad Mazyad Hazzazi, Ismail Bahkali, Piyush Kumar Shukla
ePrint Report ePrint Report
The protection of confidential information is a global issue and block encryption algorithms are the most reliable option for securing data. The famous information theorist, Claude Shannon has given two desirable characteristics that should exist in a strong cipher which are substitution and permutation in their fundamental research on "Communication Theory of Secrecy Systems.” block ciphers strictly follow the substitution and permutation principle in an iterative manner to generate a ciphertext. The actual strength of the block ciphers against several attacks is entirely based on its substitution characteristic, which is gained by using the substitution box(S-Box). In the current literature, algebraic structure-based and chaos-based techniques are highly used for the construction of S-boxes because both these techniques have favourable features for S-box construction, but also various attacks of these techniques have been identified including SAT solver,Linear and differential attacks,Gröbner-based attacks,XSL attacks,Interpolation attacks,XL based-attacks,Finite precision effect, chaotic systems degradation, predictability,weak randomness, chaotic discontinuity, Limited control parameters. The main objective of this research is to design a novel technique for the dynamic generation of S-boxes that are safe against the cryptanalysis techniques of algebraic structure-based and chaos-based approaches. True randomness has been universally recognized as the ideal method for cipher primitives design because true random numbers are unpredictable, irreversible, and unreproducible. The biggest challenge we faced during this research was how can we generate the true random numbers and how can true random numbers utilized for strengthening the s-box construction technique. The basic concept of the proposed technique is the extraction of true random bits from underwater acoustic waves and to design a novel technique for the dynamic generation of S-boxes using the chain of knight’s tour. Rather than algebraic structure and chaos-based, our proposed technique depends on inevitable high-quality randomness which exists in underwater acoustics waves. The proposed method satisfies all standard evaluation tests of S-boxes construction and true random numbers generation. Two million bits have been analyzed using the NIST randomness test suite, and the results show that underwater sound waves are an impeccable entropy source for true randomness. Additionally, our dynamically generated S-boxes have better or equal strength, over the latest published S-boxes (2020 to 2021). According to our knowledge first time, this type of research has been done, in which natural randomness of underwater acoustic waves has been used for the construction of block cipher's Substitution Box.
Expand
Marcel Dall'Agnol, Nicholas Spooner
ePrint Report ePrint Report
Collapsing and collapse binding were proposed by Unruh (Eurocrypt '16) as post-quantum strengthenings of collision resistance and computational binding (respectively). These notions have been very successful in facilitating the "lifting" of classical security proofs to the quantum setting. A natural question remains, however: is collapsing is the weakest notion that suffices for such lifting? In this work we answer this question in the affirmative by giving a classical commit-and-open protocol which is post-quantum secure if and only if the commitment scheme (resp. hash function) used is collapse binding (resp. collapsing). This result also establishes that a variety of "weaker" post-quantum computational binding notions (sum binding, CDMS binding and unequivocality) are in fact equivalent to collapse binding. Finally, we establish a "win-win" result, showing that a post-quantum collision resistant hash function that is not collapsing can be used to build an equivocal hash function (which can, in turn, be used to build one-shot signatures and other useful quantum primitives). This strengthens a result due to Zhandry (Eurocrypt '19) showing that the same object yields quantum lightning. For this result we make use of recent quantum rewinding techniques.
Expand
◄ Previous Next ►