International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

07 February 2023

Tudorică Radu, Rares Radu, Emil Simion
ePrint Report ePrint Report
Back in the 90s when the notion of malware first appeared, it was clear that the behaviour and purpose of such software should be closely analysed, such that systems all over the world should be patched, secured and ready to prevent other malicious activities to be happening in the future. Thus, malware analysis was born. In recent years, the rise of malware of all types, for example trojan, ransowmare, adware, spyware and so on, implies that deeper understanding of operating systems, attention to the details and perseverance are just some of the traits any malware analyst should have in their bag. With Windows being the worldwide go-to operating system, Windows' executable files represent the perfect way in which malware can be disguised to later be loaded and produce damage. In this paper we highlight how ciphers like Vigen\`ere cipher or Caesar cipher can be extended to more complex classes, such that, when later broken, ways of decrypting malware payloads, that are disguised in Windows executable files, are found. Alongside the theoretical information present in this paper, based on a dataset provided by our team at Bitdefender, we describe our implementation on how the key to decryption of such payloads can be found, what techniques are present in our approach, how optimization can be done, what are the pitfalls of this implementation and, lastly, open a discussion on how to tackle these pitfalls.
Expand
Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen
ePrint Report ePrint Report
Financial applications have historically required strong security guarantees. These can be achieved in a digital world via cryptographic tools but have traditionally been employed to provide authenticity and privacy for data exchanged between clients and financial institutions over insecure networks (e.g. the Internet). However, the recent advent of cryptocurrencies and smart contract platforms, based on blockchains, allowed financial transactions to be carried out over a public ledger, instead of keeping such transactions exclusive to private institutions. This introduced a new challenge: Allowing any third party to verify the validity of financial operations by means of public records on a blockchain, while keeping sensitive data private. Advanced cryptographic techniques such as Zero Knowledge (ZK) proofs rose to prominence as a solution to this challenge, allowing for the owner of sensitive information (e.g. the identities of users involved in an operation) to provide unforgeable evidence that a certain operation has been correctly executed without revealing said sensitive data. Moreover, once the Fintech community discovered the power of such advanced techniques, it also became clear that performing arbitrary computation on private data by means of secure Multiparty Computation (MPC), and related techniques like Fully Homomorphic Encryption (FHE), would allow more powerful financial applications, also in traditional finance, involving sensitive data from multiple sources. In this survey, we present an overview of the main Privacy-Enhancing Technologies (PETs) available in the state of the art of current advanced cryptographic research and how they can be used to address challenges in both traditional and decentralized finance. In particular, we consider the following classes of applications: 1. Identity Management, KYC & AML; 2. Legal; 3. Digital Asset Custody; and 4. Markets & Settlement. We examine how ZK proofs, MPC and related PETs have been used to tackle challenges in each of these applications. Finally, we propose future applications of PETs as Fintech solutions to currently unsolved issues. While we present a broad overview, we focus mainly on those applications that require privacy preserving computation on data from multiple parties.
Expand
Dmitrii Koshelev
ePrint Report ePrint Report
The current article provides a new deterministic hash function $\mathcal{H}$ to almost any elliptic curve $E$ over a finite field $\mathbb{F}_{\!q}$, having an $\mathbb{F}_{\!q}$-isogeny of degree $3$. Since $\mathcal{H}$ just has to compute a certain Lucas sequence element, its complexity always equals $O(\log(q))$ operations in $\mathbb{F}_{\!q}$ with a small constant hidden in $O$. In comparison, whenever $q \equiv 1 \ (\mathrm{mod} \ 3)$, almost all previous hash functions need to extract at least one square root in $\mathbb{F}_{\!q}$. Over the field $\mathbb{F}_{\!q}$ of $2$-adicity $\nu$ this amounts to $O(\log(q) + \nu^2)$ operations in $\mathbb{F}_{\!q}$ for the Tonelli--Shanks algorithm and $O(\log(q) + \nu^{3/2})$ ones for the recent Sarkar algorithm. A detailed analysis shows that $\mathcal{H}$ is several times faster than earlier state-of-the-art hash functions to the curve NIST P-224 (for which $\nu = 96$) from the American standard NIST SP 800-186.
Expand
Adam Caulfield, Nabiha Raza, Peizhao Hu
ePrint Report ePrint Report
Homomorphic encryption (HE) allows for computations on encrypted data without requiring decryption. HE is commonly applied to outsource computation on private data. Due to the additional risks caused by data outsourcing, the ability to recover from losses is essential, but doing so on data encrypted under an HE scheme introduces additional challenges for recovery and usability. This work introduces X-Cipher, which aims to make HE data resilient by ensuring it is private and fault-tolerant simultaneously at all stages during data-outsourcing. X-Cipher allows for data recovery without decryption, and maintains its ability to recover and keep data private when a cluster server has been compromised. X-Cipher allows for reduced ciphertext storage overhead by introducing novel encoding and leveraging previously introduced ciphertext packing. X-Cipher's capabilities were evaluated on synthetic dataset, and compared to prior work to demonstrate X-Cipher enables additional security capabilities while enabling privacy-preserving outsourced computations.
Expand
Akin Ünal
ePrint Report ePrint Report
In this work, we will give new attacks on the pseudorandomness of algebraic pseudorandom number generators (PRGs) of polynomial stretch. Our algorithms apply to a broad class of PRGs and are in the case of general local PRGs faster than currently known attacks. At the same time, in contrast to most algebraic attacks, subexponential time and space bounds will be proven for our attacks without making any assumptions of the PRGs or assuming any further conjectures. Therefore, we yield in this text the first subexponential distinguishing attacks on PRGs from constant-degree polynomials and close current gaps in the subexponential cryptoanalysis of lightweight PRGs.

Concretely, against PRGs $F : \mathbb{Z}_q^{n} \rightarrow \mathbb{Z}_q^{m}$ that are computed by polynomials of degree $d$ over a field $\mathbb{Z}_q$ and have a stretch of $m = n^{1+e}$ we give an attack with space and time complexities $n^{O(n^{1 - \frac{e}{d-1}})}$ and noticeable advantage $1 - {O(n^{1 - \frac{e}{d-1}}/{q})}$, if $q$ is large. If $F$ is of constant locality $d$ and $q$ is constant, we construct a second attack that has a space and time complexity of $n^{O(\log(n)^{\frac{1}{(q-1)d-1}} \cdot n^{1 - \frac{e}{(q-1)d-1}})}$ and noticeable advantage $1-O((\log(n)/n^e)^{\frac{1}{(q-1)d-1}})$.
Expand
Chloé Gravouil
ePrint Report ePrint Report
One of the main security challenges white-box cryptography needs to address is side-channel security. To this end, designers aim to eliminate the dependence between variables and sensitive data. Classical countermeasures to do so are masking schemes. Nevertheless, most masking schemes are not designed to thwart the other main security threat : fault attacks. Thus, we aimed to build a masking scheme that could combine resistance to both of these types of attacks. In this paper, we present our new generic fault resistant masking scheme using BCH error-correcting codes, as well as the design choices behind it.
Expand

01 February 2023

Manjeet Kaur, Tarun Yadav, Manoj Kumar, Dhananjoy Dey
ePrint Report ePrint Report
The lightweight block ciphers ULC and LICID are introduced by Sliman et al. (2021) and Omrani et al. (2019) respectively. These ciphers are based on substitution permutation network structure. ULC is designed using the ULM method to increase efficiency, memory usage, and security. On the other hand, LICID is specifically designed for image data. In the ULC paper, the authors have given a full-round differential characteristic with a probability of $2^{-80}$. In the LICID paper, the authors have presented an 8-round differential characteristic with a probability of $2^{-112.66}$. In this paper, we present the 15-round ULC and the 14-round LICID differential characteristics of probabilities $2^{-45}$ and $2^{-40}$ respectively using the MILP model.
Expand
Diego Castejon-Molina, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez
ePrint Report ePrint Report
The interest shown by central banks in deploying Central Bank Digital Currency (CBDC) has spurred a blooming number of conceptually different proposals from central banks and academia. Yet, they share the common, transversal goal of providing citizens with an additional digital monetary instrument. Citizens, equipped with CBDC wallets, should have access to CBDC fund and defund operations that allow the distribution of CBDC from the central bank to citizens with the intermediation of commercial banks. Despite their key role in the CBDC deployment as acknowledged, e.g., by the European Central Bank, operations fund and defund have not been formally studied yet. In this state of affairs, this work strives to cryptographically define the problem of fund and defund of CBDC wallets as well as the security and privacy notions of interest. We consider a setting with three parties (citizen, commercial bank and central bank) and three ledgers: the CBDC ledger, the retail ledger (where citizens have their accounts with their commercial banks) and the wholesale ledger (where commercial banks have their accounts with the central bank). We follow a modular approach, initially defining the functionality of two types of ledgers: Basic Ledger (BL), which supports basic transactions, and Conditional Payment Ledger(CP), which additionally supports conditional transactions. We then use BL and CP to define the CBDC-Cash Environment (CCE) primitive, which captures the core functionality of operations fund and defund. We require that CCE satisfies balance security: either operation fund/defund is successful, or no honest party loses their funds. CCE also satisfies that fund/defund cannot be used to breach the privacy of the CBDC ledger. Finally, we provide two efficient and secure constructions for CCE to cover both CP and BL types of CBDC ledger. Our performance evaluation shows that our constructions impose small computation and communication overhead to the underlying ledgers. The modular design of CCE allows for the incorporation in our CCE constructions of any CBDC ledger proposal that can be proven a secure instance of CP or BL, enabling thereby a seamless method to provide CBDC fund and defund operations.
Expand
Eike Kiltz, Jiaxin Pan, Doreen Riepel, Magnus Ringerud
ePrint Report ePrint Report
We introduce CorrGapCDH, the Gap Computational Diffie-Hellman problem in the multi-user setting with Corruptions. In the random oracle model, our assumption tightly implies the security of the authenticated key exchange protocols NAXOS in the eCK model and (a simplified version of) X3DH without ephemeral key reveal. We prove hardness of CorrGapCDH in the generic group model, with optimal bounds matching the one of the discrete logarithm problem.

We also introduce CorrCRGapCDH, a stronger Challenge-Response variant of our assumption. Unlike standard GapCDH, CorrCRGapCDH implies the security of the popular AKE protocol HMQV in the eCK model, tightly and without rewinding. Again, we prove hardness of CorrCRGapCDH in the generic group model, with (almost) optimal bounds.

Our new results allow implementations of NAXOS, X3DH, and HMQV without having to adapt the group sizes to account for the tightness loss of previous reductions. As a side result of independent interest, we also obtain modular and simple security proofs from standard GapCDH with tightness loss, improving previously known bounds.
Expand

30 January 2023

Tarun Chitra, Matheus V. X. Ferreira, Kshitij Kulkarni
ePrint Report ePrint Report
Akbarpour and Li (2020) formalized credibility as an auction desideratum where the auctioneer cannot benefit by implementing undetectable deviations from the promised auction and showed that, in the plain model, the ascending price auction with reserves is the only credible, strategyproof, revenue-optimal auction. Ferreira and Weinberg (2020) proposed the Deferred Revelation Auction (DRA) as a communication efficient auction that avoids the uniqueness results from (2020) assuming the existence of cryptographic commitments and as long as bidder valuations are MHR. They also showed DRA is not credible in settings where bidder valuations are $\alpha$-strongly regular unless $\alpha$ > 1. In this paper, we ask if blockchains allow us to design a larger class of credible auctions. We answer this question positively, by showing that DRA is credible even for $\alpha$-strongly regular distributions for all $\alpha$ > 0 if implemented over a secure and censorship-resistant blockchain. We argue ledgers provide two properties that limit deviations from a self-interested auctioneer. First, the existence of smart contracts allows one to extend the concept of credibility to settings where the auctioneer does not have a reputation — one of the main limitations for the definition of credibility from Akbarpour and Li (2020). Second, blockchains allow us to implement mechanisms over a public broadcast channel, removing the adaptive undetectable deviations driving the negative results of Ferreira and Weinberg (2020).
Expand
Luciano Freitas, Andrei Tonkikh, Adda-Akram Bendoukha, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, Petr Kuznetsov
ePrint Report ePrint Report
In a single secret leader election protocol (SSLE), one of the system participants is chosen and, unless it decides to reveal itself, no other participant can identify it. SSLE has a great potential in protecting blockchain consensus protocols against denial of service (DoS) attacks. However, all existing solutions either make strong synchrony assumptions or have expiring registration, meaning that they require elected processes to re-register themselves before they can be re-elected again. This, in turn, prohibits the use of these SSLE protocols to elect leaders in partially-synchronous consensus protocols as there may be long periods of network instability when no new blocks are decided and, thus, no new registrations (or re-registrations) are possible. In this paper, we propose Homomorphic Sortition -- the first asynchronous SSLE protocol with non-expiring registration, making it the first solution compatible with partially-synchronous leader-based consensus protocols.

Homomorphic Sortition relies on Threshold Fully Homomorphic Encryption (ThFHE) and is tailored to proof-of-stake (PoS) blockchains, with several important optimizations with respect to prior proposals. In particular, unlike most existing SSLE protocols, it works with arbitrary stake distributions and does not require a user with multiple coins to be registered multiple times. Our protocol is highly parallelizable and can be run completely off-chain after setup.

Some blockchains require a sequence of rounds to have non-repeating leaders. We define a generalization of SSLE, called Secret Leader Permutation (SLP) in which the application can choose how many non-repeating leaders should be output in a sequence of rounds and we show how Homomorphic Sortition also solves this problem.
Expand
Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, Adam Suhl
ePrint Report ePrint Report
Amortized bootstrapping offers a way to simultaneously refresh many ciphertexts of a fully homomorphic encryption scheme, at a total cost comparable to that of refreshing a single ciphertext. An amortization method for FHEW-style cryptosystems was first proposed by (Micciancio and Sorrell, ICALP 2018), who showed that the amortized cost of bootstrapping n FHEW-style ciphertexts can be reduced from $O(n)$ basic cryptographic operations to just $O(n^{\epsilon})$, for any constant $\epsilon>0$. However, despite the promising asymptotic saving, the algorithm was rather inpractical due to a large constant (exponential in $1/\epsilon$) hidden in the asymptotic notation. In this work, we propose an alternative amortized boostrapping method with much smaller overhead, still achieving $O(n^\epsilon)$ asymptotic amortized cost, but with a hidden constant that is only linear in $1/\epsilon$, and with reduced noise growth. This is achieved following the general strategy of (Micciancio and Sorrell), but replacing their use of the Nussbaumer transform, with a much more practical Number Theoretic Transform, with multiplication by twiddle factors implemented using ring automorphisms. A key technical ingredient to do this is a new "scheme switching" technique proposed in this paper which may be of independent interest.
Expand
Vahid Amin-Ghafari, Mohammad Ali Orumiehchiha, Saeed Rostami
ePrint Report ePrint Report
A few small-state stream ciphers (SSCs) were proposed for constrained environments. All of the SSCs before the LILLE stream cipher suffered from distinguishing attacks and fast correlation attacks. The designers of LILLE claimed that it is based on the well-studied two-key Even-Mansour scheme and so is resistant to various types of attacks. This paper proposes a distinguishing attack on LILLE, the first attack since 2018. The data and time complexities to attack LILLE-40 are 2^(50.7) and 2^(41.2), respectively. We verified practically our attack on a halved version of LILLE-40. A countermeasure is suggested to strengthen LILLE against the proposed attack. We hope our attack opens the door to more cryptanalyses of LILLE.
Expand
Ripon Patgiri, Laiphrakpam Dolendro Singh
ePrint Report ePrint Report
In this paper, we propose a variable-sized, one-way, and randomized secure hash algorithm, VORSHA for short. We present six variants of VORSHA, which are able to generate a randomized secure hash value. VORSHA is the first secure hash algorithm to randomize the secure hash value fully. The key embodiment of our proposed algorithm is to generate a pool of pseudo-random bits using the primary hash functions and selects a few bits from the pool of bits to form the final randomized secure hash value. Each hash value of the primary hash function produces a single bit (either 0 or 1) for the pool of pseudo-random bits. Thus, VORSHA randomized the generated bit string to produce the secure hash value, and we term it as a randomized secure hash value. Moreover, the randomized secure hash value is tested using NIST-SP 800-22 statistical test suite, and the generated randomized secure hash value of VORSHA has passed all 15 statistical tests of NIST-SP 800-22. It proves that the VORSHA is able to generate a highly unpredictable yet consistent secure hash value. Moreover, VORSHA features a memory-hardness property to restrict a high degree of parallelism, which features a tiny memory footprint for legal users but massive memory requirements for adversaries. Furthermore, we demonstrate how to prevent Rainbow Table as a Service (RTaaS) attack using VORSHA. The source code is available at https://github.com/patgiri/VORSHA.
Expand

28 January 2023

Ling Sun, Meiqin Wang
ePrint Report ePrint Report
Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three strategies for developing SAT models for 8-bit S-boxes that are geared toward differential probabilities and linear correlations. While these approaches cannot guarantee a minimum model size, the time needed to obtain models is drastically reduced. The newly proposed SAT model for large S-boxes enables us to establish that the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2^{-131}, thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the seven AES-based constructions C1 - C7 designed by Jean and Nikolic and compute the minimum number of active S-boxes necessary to cause an internal collision using the SAT method. For two constructions C3 and C5, the current lower bound on the number of active S-boxes is increased, resulting in a more precise security analysis for these two structures.
Expand
Kyle Storrier, Adithya Vadapalli, Allan Lyons, Ryan Henry
ePrint Report ePrint Report
We introduce Grotto, a framework and C++ library for space- and time-efficient $(2+1)$-party piecewise polynomial (i.e., spline) evaluation on secrets additively shared over $\mathbb{Z}_{2^{n}}$. Grotto improves on the state-of-the-art approaches based on distributed comparison functions (DCFs) in almost every metric, offering asymptotically superior communication and computation costs with the same or lower round complexity. At the heart of Grotto is a novel observation about the structure of the ``tree'' representation underlying the most efficient distributed point functions (DPFs) from the literature, alongside an efficient algorithm that leverages this structure to do with a single DPF what state-of-the-art approaches require many DCFs to do. Our open-source Grotto implementation supports evaluating dozens of useful functions out of the box, including trigonometric and hyperbolic functions (and their inverses); various logarithms; roots, reciprocals, and reciprocal roots; sign testing and bit counting; and over two dozen of the most common (univariate) activation functions from the deep-learning literature.
Expand
Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, Bobbin Threadbare
ePrint Report ePrint Report
This paper specifies a new arithmetization-oriented hash function called Tip5. It uses the SHARK design strategy with low-degree power maps in combination with lookup tables, and is tailored to the field with $p=2^{64}-2^{32}+1$ elements.

The context motivating this design is the recursive verification of STARKs. This context imposes particular design constraints, and therefore the hash function's arithmetization is discussed at length.
Expand
Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni
ePrint Report ePrint Report
Constructing a supersingular elliptic curve whose endomorphism ring is isomorphic to a given quaternion maximal order (one direction of the Deuring correspondence) is known to be polynomial-time assuming the generalized Riemann hypothesis [KLPT14; Wes21], but notoriously daunting in practice when not working over carefully selected base fields. In this work, we speed up the computation of the Deuring correspondence in general characteristic, i.e., without assuming any special form of the characteristic. Our algorithm follows the same overall strategy as earlier works, but we add simple (yet effective) optimizations to multiple subroutines to significantly improve the practical performance of the method. To demonstrate the impact of our improvements, we show that our implementation achieves highly practical running times even for examples of cryptographic size. One implication of these findings is that cryptographic security reductions based on KLPT-derived algorithms (such as [EHLMP18; Wes22]) have become tighter, and therefore more meaningful in practice. Another is the pure bliss of fast(er) computer algebra: We provide a Sage implementation which works for general primes and includes many necessary tools for computational number theorists' and cryptographers' needs when working with endomorphism rings of supersingular elliptic curves. This includes the KLPT algorithm, translation of ideals to isogenies, and finding supersingular elliptic curves with known endomorphism ring for general primes. Finally, the Deuring correspondence has recently received increased interest because of its role in the SQISign signature scheme [DeF+20]. We provide a short and self-contained summary of the state-of-the-art algorithms without going into any of the cryptographic intricacies of SQISign.
Expand
Georg Land, Adrian Marotzke, Jan Richter-Brockmann, Tim Güneysu
ePrint Report ePrint Report
Streamlined NTRU Prime is a lattice-based Key Encapsulation Mechanism (KEM) that is, together with X25519, currently the default algorithm in OpenSSH 9. Being based on lattice assumptions, it is assumed to be secure also against attackers with access to large-scale quantum computers. While Post-Quantum Cryptography (PQC) schemes have been subject to extensive research in the recent years, challenges remain with respect to protection mechanisms against attackers that have additional side-channel information such as the power consumption of a device processing secret data. As a countermeasure to such attacks, masking has been shown to be a promising and effective approach. For public-key schemes, including any recent PQC schemes, usually a mixture of Boolean and arithmetic approaches are applied on an algorithmic level. Our generic hardware implementation of Streamlined NTRU Prime decapsulation, however, follows an idea that until now was assumed to be only applicable to symmetric cryptography: gate-level masking. There, a hardware design that consists of logic gates is transformed into a secure implementation by replacing each gate with a composably secure gadget that operates on uniform random shares of secret values. In our work, we show the feasibility of applying this approach also to PQC schemes and present the first Public-Key Cryptography (PKC) – pre- and post-quantum – implementation masked at gate level considering several trade-offs and design choices. We synthesize our implementation both for Artix-7 Field-Programmable Gate Arrays (FPGAs) and 45 nm Application-Specific Integrated Circuits (ASICs), yielding practically feasible results regarding area, randomness demand and latency. Finally, we also analyze the applicability of our concept to Kyber which will be standardized by the National Institute of Standards and Technology (NIST).
Expand

27 January 2023

Anamaria Costache, Lea Nürnberger, Rachel Player
ePrint Report ePrint Report
In this work, we investigate the BGV scheme as implemented in HElib. We begin by performing an implementation-specific noise analysis of BGV. This allows us to derive much tighter bounds than what was previously done. To confirm this, we compare our bounds against the state of the art. We find that, while our bounds are at most $1.8$ bits off the experimentally observed values, they are as much as $29$ bits tighter than previous work. Finally, to illustrate the importance of our results, we propose new and optimised parameters for HElib. In HElib, the special modulus is chosen to be $k$ times larger than the current ciphertext modulus $Q_i$. For a ratio of subsequent ciphertext moduli $\log\left( \frac{Q_i}{Qi−1}\right) = 54$ (a very common choice in HElib), we can optimise $k$ by up to $26$ bits. This means that we can either enable more multiplications without having to switch to larger parameters, or reduce the size of the evaluation keys, thus reducing on communication costs in relevant applications. We argue that our results are near-optimal.
Expand
◄ Previous Next ►