International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

24 September 2023

Christopher Leonardi, Maya Gusak
ePrint Report ePrint Report
Gentry's groundbreaking work showed that a fully homomorphic, provably secure scheme is possible via bootstrapping a somewhat homomorphic scheme. However, a major drawback of bootstrapping is its high computational cost. One alternative is to use a different metric for noise so that homomorphic operations do not accumulate noise, eliminating the need for boostrapping altogether. Leonardi and Ruiz-Lopez present a group-theoretic framework for such a ``noise non-accumulating'' multiplicative homomorphic scheme, but Agathocleous et al. expose weaknesses in this framework when working over finite abelian groups. Tangentially, Li and Wang present a ``noise non-accumulating'' fully homomorphic scheme by performing Ostrovsky and Skeith's transform on a multiplicative homomorphic scheme of non-abelian group rings. Unfortunately, the security of Li and Wang's scheme relies on the Factoring Large Numbers assumption, which is false given an adversary with a quantum computer. In this work, we seek to modify Li and Wang's scheme to be post-quantum secure by fitting it into the Leonardi and Ruiz-Lopez framework for non-abelian rings. We discuss improved security assumptions for Li and Wang encryption and assess the shortcomings of working in a non-abelian setting. Finally, we show that a large class of semisimple rings is incompatible with the Leonardi and Ruiz-Lopez framework.
Expand
Zahra Ahmadian, Akram Khalesi, Dounia M'foukh, Hossein Moghimi, María Naya-Plasencia
ePrint Report ePrint Report
Truncated differential attacks were introduced by Knudsen in 1994 [1]. They are a well-known family that has arguably received less attention than some other variants of differential attacks. This paper gives some new insight on truncated differential attacks and provides the best-known attacks on both variants of the lightweight cipher QARMA, in the single tweak model, reaching for the first time 10 rounds while contradicting the security claims of this reduced version. These attacks use some new truncated distinguishers as well as some evolved key-recovery techniques.
Expand
Arthur Herlédan Le Merdy, Benjamin Wesolowski
ePrint Report ePrint Report
Given a supersingular elliptic curve $E$ and a non-scalar endomorphism $\alpha$ of $E$, we prove that the endomorphism ring of $E$ can be computed in classical time about $\text{disc}(\mathbb{Z}[\alpha])^{1/4}$ , and in quantum subexponential time, assuming the generalised Riemann hypothesis. Previous results either had higher complexities, or relied on heuristic assumptions.

Along the way, we prove that the Primitivisation problem can be solved in polynomial time (a problem previously believed to be hard), and we prove that the action of smooth ideals on oriented elliptic curves can be computed in polynomial time (previous results of this form required the ideal to be powersmooth, i.e., not divisible by any large prime power). Following the attacks on SIDH, isogenies in high dimension are a central ingredient of our results.
Expand
Shuichi Katsumata, Michael Reichle, Yusuke Sakai
ePrint Report ePrint Report
Blind signatures serve as a foundational tool for privacy-preserving applications and have recently seen renewed interest due to new applications in blockchains and privacy-authentication tokens. With this, constructing practical round-optimal (i.e., signing consists of the minimum two rounds) blind signatures in the random oracle model (ROM) has been an active area of research, where several impossibility results indicate that either the ROM or a trusted setup is inherent.

In this work, we present two round-optimal blind signatures under standard assumptions in the ROM with different approaches: one achieves the smallest sum of the signature and communication sizes, while the other achieves the smallest signature size. Both of our instantiations are based on standard assumptions over asymmetric pairing groups, i.e., CDH, DDH, and/or SXDH. Our first construction is a highly optimized variant of the generic blind signature construction by Fischlin (CRYPTO'06) and has signature and communication sizes 447 B and 303 B, respectively. We progressively weaken the building blocks required by Fischlin and we result in the first blind signature where the sum of the signature and communication sizes fit below 1 KB based on standard assumptions. Our second construction is a semi-generic construction from a specific class of randomizable signature schemes that admits an all-but-one reduction. The signature size is only 96 B while the communication size is 2.2 KB. This matches the previously known smallest signature size while improving the communication size by several orders of magnitude. Finally, both of our constructions rely on a (non-black box) fine-grained analysis of the forking lemma that may be of independent interest.
Expand
Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin, Zhenyu Guan
ePrint Report ePrint Report
As concerns are increasingly raised about data privacy, encrypted database management system (DBMS) based on fully homomorphic encryption (FHE) attracts increasing research attention, as FHE permits DBMS to be directly outsourced to cloud servers without revealing any plaintext data. However, the real-world deployment of FHE-based DBMS faces two main challenges: i) high computational latency, and ii) lack of elastic query processing capability, both of which stem from the inherent limitations of the underlying FHE operators. Here, we introduce HE$^3$DB, a fully homomorphically encrypted, efficient and elastic DBMS framework based on a new FHE infrastructure. By proposing and integrating new arithmetic and logic homomorphic operators, we devise fast and high-precision homomorphic comparison and aggregation algorithms that enable a variety of SQL queries to be applied over FHE ciphertexts, e.g., compound filter-aggregation, sorting, grouping, and joining. In addition, in contrast to existing encrypted DBMS that only support aggregated information retrieval, our framework permits further server-side analytical processing over the queried FHE ciphertexts, such as private decision tree evaluation. In the experiment, we rigorously study the efficiency and flexibility of HE$^3$DB. We show that, compared to the state-of-the-art techniques,HE$^3$DB can homomorphically evaluate end-to-end SQL queries as much as $41\times$ -$299\times$ faster than the state-of-the-art solution, completing a TPC-H query over a 16-bit 10K-row database within 241 seconds.
Expand
Song Bian, Zian Zhao, Zhou Zhang, Ran Mao, Kohei Suenaga, Yier Jin, Zhenyu Guan, Jianwei Liu
ePrint Report ePrint Report
We propose a new compiler framework that automates code generation over multiple fully homomorphic encryption (FHE) schemes. While it was recently shown that algorithms combining multiple FHE schemes (e.g., CKKS and TFHE) achieve high execution efficiency and task utility at the same time, developing fast cross-scheme FHE algorithms for real-world applications generally require heavy hand-tuned optimizations by cryptographic experts, resulting in either high usability costs or low computational efficiency. To solve the usability and efficiency dilemma, we design and implement HEIR, a compiler framework based on multi-level intermediate representation (IR). To achieve cross-scheme compilation of efficient FHE circuits, we develop a two-stage code-lowering structure based on our custom IR dialects. First, the plaintext program along with the associated data types are converted into FHE-friendly dialects in the transformation stage. Then, in the optimization stage, we apply FHE-specific optimizations to lower the transformed dialect into our bottom-level FHE library operators. In the experiment, we implement the entire software stack for HEIR, and demonstrate that complex end-to-end programs, such as homomorphic K-Means clustering and homomorphic data aggregation in databases, can easily be compiled to run $72$--$179\times$ faster than the program generated by the state-of-the-art FHE compilers.
Expand
Akshima, Xiaoqi Duan, Siyao Guo, Qipeng Liu
ePrint Report ePrint Report
Sponge paradigm, used in the design of SHA-3, is an alternative hashing technique to the popular Merkle-Damgård paradigm. We revisit the problem of finding $B$-block-long collisions in sponge hash functions in the auxiliary-input random permutation model, in which an attacker gets a piece of $S$-bit advice about the random permutation and makes $T$ (forward or inverse) oracle queries to the random permutation.

Recently, significant progress has been made in the Merkle-Damgård setting and optimal bounds are known for a large range of parameters, including all constant values of $B$. However, the sponge setting is widely open: there exist significant gaps between known attacks and security bounds even for $B=1$.

Freitag, Ghoshal and Komargodski (CRYPTO 2022) showed a novel attack for $B=1$ that takes advantage of the inverse queries and achieves advantage $\tilde{\Omega}(\min(S^2T^2/2^{2c}$, $ (S^2T/2^{2c})^{2/3})+T^2/2^r)$, where $r$ is bit-rate and $c$ is the capacity of the random permutation. However, they only showed an $\tilde{O}(ST/2^c+T^2/2^r)$ security bound, leaving open an intriguing quadratic gap. For $B=2$, they beat the general security bound by Coretti, Dodis, Guo (CRYPTO 2018) for arbitrary values of $B$. However, their highly non-trivial argument is quite laborious, and no better (than the general) bounds are known for $B\geq 3$.

In this work, we study the possibility of proving better security bounds in the sponge setting. To this end, - For $B=1$, we prove an improved $\tilde{O}(S^2T^2/2^{2c}+S/2^c+T/2^c+T^2/2^r)$ bound. Our bound strictly improves the bound by Freitag et al., and is optimal for $ST^2\leq 2^c$. - For $B=2$, we give a considerably simpler and more modular proof, recovering the bound obtained by Freitag et al. - We obtain our bounds by adapting the recent multi-instance technique of Akshima, Guo and Liu (CRYPTO 2022) which bypasses the limitations of prior techniques in the Merkle-Damgård setting. To complement our results, we provably show that the recent multi-instance technique cannot further improve our bounds for $B=1,2$, and the general bound by Correti et al., for $B\geq 3$.

Overall, our results yield state-of-the-art security bounds for finding short collisions and fully characterize the power of the multi-instance technique in the sponge setting.
Expand
Yevgeniy Dodis, Shai Halevi, Daniel Wichs
ePrint Report ePrint Report
The notion of functional re-encryption security (funcCPA) for public-key encryption schemes was recently introduced by Akavia et al. (TCC'22), in the context of homomorphic encryption. This notion lies in between CPA security and CCA security: we give the attacker a functional re-encryption oracle instead of the decryption oracle of CCA security. This oracle takes a ciphertext $c$ and a function $f$, and returns fresh encryption of the output of $f$ applied to the decryption of $c$; in symbols, $c'=Enc(f(Dec(c)))$. More generally, we even allow for a multi-input version, where the oracle takes an arbitrary number of ciphetexts $c_1,\ldots,c_\ell$ and outputs $c' = Enc(f(Dec(c_1), \ldots, Dec(c_\ell)))$.

In this work we observe that funcCPA security may have applications beyond homomorphic encryption, and set out to study its properties. As our main contribution, we prove that funcCPA is ``closer to CPA than to CCA''; that is, funcCPA secure encryption can be constructed in a black-box manner from CPA-secure encryption. We stress that, prior to our work, this was not known even for basic re-encryption queries corresponding to the identity function $f$.

At the core of our result is a new technique, showing how to handle adaptive functional re-encryption queries using tools previously developed in the context of non-malleable encryption, which roughly corresponds to a single non-adaptive parallel decryption query.
Expand
Hubert Kario
ePrint Report ePrint Report
In this paper we show that Bleichenbacher-style attacks on RSA decryption are not only still possible, but also that vulnerable implementations are common. We have successfully attacked multiple implementations using only timing of decryption operation and shown that many others are vulnerable. To perform the attack we used more statistically rigorous techniques like the sign test, Wilcoxon signed-rank test, and bootstrapping of median of pairwise differences. We publish a set of tools for testing libraries that perform RSA decryption against timing side-channel attacks, including one that can test arbitrary TLS servers with no need to write a test harnesses. Finally, we propose a set of workarounds that implementations can employ if they can't avoid the use of RSA.
Expand
Hubert Kario
ePrint Report ePrint Report
In this paper we analyse typical timing data that can be collected over loopback interface, in local, and in metropolitan area networks. We evaluate performance of few statistical test for detecting differences in timing of server responses. The evaluated tests include the popular Box test, as well as sign test, Wilcoxon signed-rank test, and paired sample t-test. We found that the Box test offers poor performance, as it's an incorrect test to use for the measurements we collected. Use of appropriate tests also allows for robust differentiation between much smaller differences than the existing literature would suggest. We were able to detect side channels of single-digit CPU cycles over regular gigabit Ethernet. Those alternative tests were also found to be robust against noise in production networks, allowing detection of side channel of just few nanoseconds with 6 network hops between test systems.
Expand
Chenglian Liu, Sonia Chien-I Chen
ePrint Report ePrint Report
Thangavel and Varalakshmi proposed an enhanced DNA and ElGamal cryptosystem for secure data storage and retrieval in cloud. They modified ElGamal algorithm which it calls enhanced ElGamal cryptosystem. We prove that their enhanced ElGamal scheme, which does not require two random numbers by data owner. Although the attacker is unable to find out what message the data owner gave to the data user. However, the attackers can still confuse the issue of sending messages to data users. On the other hand, this scheme can not against insider attack, therefore it is insecure.
Expand
Alessandro Melloni, Martijn Stam, Øyvind Ytrehus
ePrint Report ePrint Report
An anonymous communication network (ACN) is designed to protect the identities of two parties communicating through it, even if an adversary controls or observes parts of the network. Among the ACNs, Tor represents a practical trade-off between offering a reasonable level of anonymity and, simultaneously, an acceptable transmission delay. Due to its practical impact, there is abundant literature on the performance of Tor concerning both communication and security aspects.

Recently, a static framework was suggested for evaluating and comparing, in a quantifiable way, the effect of different scenarios (attacks, defence mechanisms, and other protocol changes). Although a static model is useful, many scenarios involve parameters and stochastic variables that change or evolve over time, or that may be influenced by active and malicious adversaries. In this paper, we propose a dynamic framework for evaluating such scenarios. We identify several scenarios where this framework is applicable, and illustrate our framework by considering the guard node mechanism in Tor. We evaluate and compare variations on the guard node concept suggested in the literature with respect to relevant performance metrics and, using the framework, support our evaluation with a theoretical analysis.
Expand
Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, Nickolai Zeldovich
ePrint Report ePrint Report
Tiptoe is a private web search engine that allows clients to search over hundreds of millions of documents, while revealing no information about their search query to the search engine’s servers. Tiptoe’s privacy guarantee is based on cryptography alone; it does not require hardware enclaves or non-colluding servers. Tiptoe uses semantic embeddings to reduce the problem of private full-text search to private nearest-neighbor search. Then, Tiptoe implements private nearest-neighbor search with a new, high-throughput protocol based on linearly homomorphic encryption. Running on a 45-server cluster, Tiptoe can privately search over 360 million web pages with 145 core-seconds of server compute, 56.9 MiB of client-server communication (74% of which occurs before the client enters its search query), and 2.7 seconds of end-to-end latency. Tiptoe’s search works best on conceptual queries (“knee pain”) and less well on exact string matches (“123 Main Street, New York”). On the MS MARCO search-quality benchmark, Tiptoe ranks the best-matching result in position 7.7 on average. This is worse than a state-of-the-art, non-private neural search algorithm (average rank: 2.3), but is close to the classical tf-idf algorithm (average rank: 6.7). Finally, Tiptoe is extensible: it also supports private text-to-image search and, with minor modifications, it can search over audio, code, and more.
Expand
YongRyeol Choi, MinGi Kim, YoungBeom Kim, JinGyo Song, JaeHwan Jin, HeeSeok Kim, Seong Chung Seo
ePrint Report ePrint Report
As the global migration to post-quantum cryptography (PQC) continues to progress actively, in Korea, the Post-Quantum Cryptography Research Center has been established to acquire PQC technology, leading the KpqC Competition. In February 2022, the KpqC Competition issued a call for proposals for PQC algorithms. By November 2022, a total of 16 candidates were selected for the first round (7 KEMs and 9 DSAs). Currently, round 1 submissions are being evaluated with respect to security, efficiency, and scalability in various environments. At the current stage, evaluating the software through an analysis to improve the software quality of the first-round submissions is judged appropriately. In this paper, we present analysis results regarding performance and implementation security on based dependency-free approach of external libraries. Namely, we configure extensive tests for an analysis with no dependencies by replacing external libraries that can complicate the build process with hard coding. From the performance perspective, we provide analysis results of performance profiling, execution time, and memory usage for each of KpqC candidates. From the implementation security perspective, we examine bugs and errors in the actual implementations using Valgrind software, metamorphic testing methodology that can include wide test coverage and constant-time implementation against the timing attack. As a result, we found implementation bugs and errors in two submissions, metamorphic testing errors in one submission, and non-constant-time implementation in one submission. Until the KpqC standard algorithm is announced, we argue that continuous integration of extensive tests will lead to higher-level software quality of KpqC candidates.
Expand
Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, Jean-René Reinhard
ePrint Report ePrint Report
Elisabeth-4 is a stream cipher tailored for usage in hybrid homomorphic encryption applications that has been introduced by Cosseron et al. at ASIACRYPT 2022. In this paper, we present several variants of a key-recovery attack on the full Elisabeth-4 that break the 128-bit security claim of that cipher. Our most optimized attack is a chosen-IV attack with a time complexity of $2^{88}$ elementary operations, a memory complexity of $2^{54}$ bits and a data complexity of $2^{41}$ bits.

Our attack applies the linearization technique to a nonlinear system of equations relating some keystream bits to the key bits and exploits specificities of the cipher to solve the resulting linear system efficiently. First, due to the structure of the cipher, the system to solve happens to be very sparse, which enables to rely on sparse linear algebra and most notably on the Block Wiedemann algorithm. Secondly, the algebraic properties of the two nonlinear ingredients of the filtering function cause rank defects which can be leveraged to solve the linearized system more efficiently with a decreased data and time complexity.

We have implemented our attack on a toy version of Elisabeth-4 to verify its correctness. It uses the efficient implementation of the Block Wiedemann algorithm of CADO-NFS for the sparse linear algebra.
Expand
Sohto Chiku, Keitaro Hashimoto, Keisuke Hara, Junji Shikata
ePrint Report ePrint Report
Identity-based matchmaking encryption (IB-ME), proposed by Ateniese et al. at Crypto 2019, allows users to communicate privately in an anonymous and authenticated manner. In this work, we revisit the security definitions and construction of IB-ME. First, we re-formalize the existing security notions for IB-ME. We reorganize privacy and authenticity notions into respective three and four definitions, which allows us to compare IB-ME schemes accurately. Second, we propose a highly efficient and strongly secure IB-ME scheme from the bilinear Diffie-Hellman assumption in the random oracle model. This scheme is based on the IB-ME scheme proposed by Ateniese et al., but we introduce several techniques to improve its security and efficiency. Third, we propose a new generic construction of IB-ME from anonymous identity-based encryption and identity-based signature. This is the first generic construction that does not rely on hierarchical identity-based encryption. Through this construction, we obtain various IB-ME schemes from both classical and post-quantum assumptions. For example, we obtain a more efficient scheme from the symmetric external Diffie-Hellman assumption in the standard model, and a practical scheme from lattices in the quantum random oracle model whose secret keys and ciphertexts are less than 10 Kilobytes. Moreover, our generic construction produces the first pairing-free IB-ME scheme in the standard model and the first tightly secure lattice-based IB-ME scheme in the quantum random oracle model.
Expand
Ian McQuoid, Jiayu Xu
ePrint Report ePrint Report
Password-authenticated key exchange (PAKE) is a class of protocols enabling two parties to convert a shared (possibly low-entropy) password into a high-entropy joint session key. Strong asymmetric PAKE (saPAKE), an extension that models the client-server setting where servers may store a client's password for repeated authentication, was the subject of standardization efforts by the IETF in 2019-20. In this work, we present the most computationally efficient saPAKE protocol so far: a compiler from PAKE to saPAKE which costs only 2 messages and 7 group exponentiations in total (3 for client and 4 for server) when instantiated with suitable underlying PAKE protocols. In addition to being efficient, our saPAKE protocol is conceptually simple and achieves the strongest notion of universally composable (UC) security.

In addition to classical assumptions and classical PAKE, we may instantiate our PAKE-to-saPAKE compiler with cryptographic group actions, such as the isogeny-based CSIDH, and post-quantum PAKE. This yields the first saPAKE protocol from post-quantum assumptions as all previous constructions rely on cryptographic assumptions weak to Shor's algorithm.
Expand
Wouter Castryck, Frederik Vercauteren
ePrint Report ePrint Report
The recent devastating attacks on SIDH rely on the fact that the protocol reveals the images $\varphi(P)$ and $\varphi(Q)$ of the secret isogeny $\varphi : E_0 \rightarrow E$ on a basis $\{P, Q\}$ of the $N$-torsion subgroup $E_0[N]$ where $N^2 > \deg(\varphi)$. To thwart this attack, two recent proposals, M-SIDH and FESTA, proceed by only revealing the images upto unknown scalars $\lambda_1, \lambda_2 \in \mathbb{Z}_N^\times$, i.e., only $\lambda_1 \varphi(P)$ and $\lambda_2 \varphi(Q)$ are revealed, where $\lambda_1 = \lambda_2$ for M-SIDH and $\lambda_1 = \lambda_2^{-1}$ for FESTA. Similar information is leaked in CSIDH since $\varphi$ maps the eigenspaces of Frobenius on $E_0$ to the corresponding eigenspaces on $E$. In this paper, we introduce a new polynomial time attack that generalizes the well known "lollipop" attack and analyze how it applies to M-SIDH, FESTA and CSIDH. We show that M-SIDH can be broken in polynomial time whenever $E_0$ or $E$ is $\mathbb{F}_p$-rational, even when the endomorphism rings of $E_0$ and $E$ are unknown. This can be generalized to the case where the starting (or end) curve is not $\mathbb{F}_p$-rational, but is connected to its Frobenius conjugate by an isogeny of small degree.

For FESTA, where the curve $E_0$ is already $\mathbb{F}_p$-rational, we obtain a polynomial time attack under the added requirement that at least one of the basis points $P, Q$ spans an eigenspace of Frobenius, of an endomorphism of low degree, or of a composition of both. We note that the current implementation of FESTA does not choose such a basis. Since it is always possible to construct an endomorphism, typically of large degree, with either $P, Q$ an eigenvector, we conclude that FESTA with overstretched parameters is insecure.

Although the information leaked in CSIDH is very similar to FESTA, we show that our attack does not reveal any new information about the secret isogeny, i.e., we only learn that it is $\mathbb{F}_p$-rational, which is a priori knowledge.

Finally, we analyze if and how it would be possible to backdoor M-SIDH and FESTA by choosing system parameters that look inconspicuous, but in fact reduce to the special cases above via a secret isogeny chosen by the adversary.
Expand
Jean Paul Degabriele, Vukašin Karadžić
ePrint Report ePrint Report
A Rugged Pseudorandom Permutation (RPRP) is a variable-input-length tweakable cipher satisfying a security notion that is intermediate between tweakable PRP and tweakable SPRP. It was introduced at CRYPTO 2022 by Degabriele and Karadžić, who additionally showed how to generically convert such a primitive into nonce-based and nonce-hiding AEAD schemes satisfying either misuse-resistance or release-of-unverified-plaintext security as well as Nonce-Set AEAD which has applications in protocols like QUIC and DTLS. Their work shows that RPRPs are powerful and versatile cryptographic primitives. However, the RPRP security notion itself can seem rather contrived, and the motivation behind it is not immediately clear. Moreover, they only provided a single RPRP construction, called UIV, which puts into question the generality of their modular approach and whether other instantiations are even possible. In this work, we address this question positively by presenting new RPRP constructions, thereby validating their modular approach and providing further justification in support of the RPRP security definition. Furthermore, we present a more refined view of their results by showing that strictly weaker RPRP variants, which we introduce, suffice for many of their transformations. From a theoretical perspective, our results show that the well-known three-round Feistel structure achieves stronger security as a permutation than a mere pseudorandom permutation---as was established in the seminal result by Luby and Rackoff. We conclude on a more practical note by showing how to extend the left domain of one RPRP construction for applications that require larger values in order to meet the desired level of security.
Expand
Yaobin Shen, François-Xavier Standaert, Lei Wang
ePrint Report ePrint Report
At CRYPTO'18, Datta et al. proposed nPolyMAC and proved the security up to 2^{2n/3} authentication queries and 2^{n} verification queries. At EUROCRYPT'19, Dutta et al. proposed CWC+ and showed the security up to 2^{2n/3} queries. At FSE'19, Datta et al. proposed PolyMAC and its key-reduced variant 2k-PolyMAC, and showed the security up to 2^{2n/3} queries. This security bound was then improved by Kim et al. (EUROCRYPT'20) and Datta et al (FSE'23) respectively to 2^{3n/4} and in the multi-user setting. At FSE'20, Chakraborti et al. proposed PDM*MAC and 1k-PDM*MAC and showed the security up to 2^{2n/3} queries. Recently, Chen et al. proposed nEHtM_p^+ and showed the security up to 2^{2n/3} queries. In this paper, we show forgery attacks on nPolyMAC, CWC+, PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM_p^+. Our attacks exploit some vulnerability in the underlying polynomial hash function Poly, and (i) require only one authentication query and one verification query; (ii) are nonce-respecting; (iii) succeed with probability 1. Thus, our attacks disprove the provable high security claims of these schemes. We then revisit their security analyses and identify what went wrong. Finally, we propose two solutions that can restore the beyond-birthday-bound security.
Expand
◄ Previous Next ►