International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

15 February 2023

Marloes Venema
ePrint Report ePrint Report
The pair encodings framework is an important result in the simplified design of complex attribute-based encryption schemes. In particular, it reduces the effort of proving security of a scheme to proving security of the associated pair encoding, which can then be transformed into a provably secure pairing-based encryption scheme with a compiler. Especially the symbolic property, as introduced by Agrawal and Chase (EUROCRYPT '17), has proven to be a valuable security notion that is both simple to verify and applies to many schemes. Nevertheless, several practical extensions using full-domain hashes or employing multiple authorities cannot be instantiated with this compiler, and therefore still require complicated proof techniques.

In this work, we present the first compiler for attribute-based encryption schemes that supports such extensions. To this end, we generalize the definitions of pair encodings and the symbolic property. With our compiler, we flexibly instantiate any pair encodings that satisfy this new notion of the symbolic property in any pairing-friendly groups, and generically prove the resulting scheme to be selectively secure. To illustrate the effectiveness of our new compiler, we give several new multi-authority and hash-based constructions.
Expand
Soundes Marzougui, Ievgan Kabin, Juliane Krämer, Thomas Aulbach, Jean-Pierre Seifert
ePrint Report ePrint Report
We present a single-trace attack against lattice-based KEMs using the cumulative distribution table for Gaussian sampling and execute it in a real-world environment. Our analysis takes a single power trace of the decapsulation algorithm as input and exploits leakage of the Gaussian sampling subroutine to reveal the session key. We investigated the feasibility of the attack on different boards and proved that the power consumption traces become less informative with higher clock frequencies. Therefore, we introduce a machine-learning denoising technique, which enhances the accuracy of our attack and leverages its success rate to 100%.

We accomplish the attack on FrodoKEM, a lattice-based KEM and third-round alternate candidate. We execute it on a Cortex-M4 board equipped with an STM32F4 micro-controller clocked at different frequencies.
Expand
Reyhaneh Rabaninejad, Alexandros Bakas, Eugene Frimpong, Antonis Michalas
ePrint Report ePrint Report
Aggregate statistics derived from time-series data collected by individual users are extremely beneficial in diverse fields, such as e-health applications, IoT-based smart metering networks, and federated learning systems. Since user data are privacy-sensitive in many cases, the untrusted aggregator may only infer the aggregation without breaching individual privacy. To this aim, secure aggregation techniques have been extensively researched over the past years. However, most existing schemes suffer either from high communication overhead when users join and leave, or cannot tolerate node dropouts. In this paper, we propose a dropout-resistant bandwidth-efficient time-series data aggregation. The proposed scheme does not incur any interaction among users, involving a solo round of user→aggregator communication exclusively. Additionally, it does not trigger a re-generation of private keys when users join and leave. Moreover, the aggregator is able to output the aggregate value by employing the re-encrypt capability acquired during a one-time setup phase, notwithstanding the number of nodes in the ecosystem that partake in the data collection of a certain epoch. Dropout-resistancy, trust-less key management, low-bandwidth and non-interactive nature of our construction make it ideal for many rapid-changing distributed real-world networks. Other than bandwidth efficiency, our scheme has also demonstrated efficiency in terms of computation overhead
Expand
Jianwei Li, Michael Walter
ePrint Report ePrint Report
The best lattice reduction algorithm known in theory for approximating the Shortest Vector Problem (SVP) over lattices is the slide reduction algorithm (STOC '08 & CRYPTO '20). In this paper, we first improve the running time analysis of computing slide-reduced bases based on potential functions. This analysis applies to a generic slide reduction algorithm that includes (natural variants of) slide reduction and block-Rankin reduction (ANTS '14). We then present a rigorous dynamic analysis of generic slide reduction using techniques originally applied to a variant of BKZ (CRYPTO '11). This provides guarantees on the quality of the current lattice basis during execution. This dynamic analysis not only implies sharper convergence for these algorithms to find a short nonzero vector (rather than a fully reduced basis), but also allows to heuristically model/trace the practical behaviour of slide reduction. Interestingly, this dynamic analysis inspires us to introduce a new slide reduction variant with better time/quality trade-offs. This is confirmed by both our experiments and simulation, which also show that our variant is competitive with state-of-the-art reduction algorithms. To the best of our knowledge, this work is the first attempt of improving the practical performance of slide reduction beyond speeding up the SVP oracle.
Expand
Alessandro Budroni, Erik Mårtensson
ePrint Report ePrint Report
In post-quantum cryptography (PQC), Learning With Errors (LWE) is the dominant underlying mathematical problem. For example, in NIST's PQC standardization process, the Key Encapsulation Mechanism (KEM) protocol chosen for standardization was Kyber, an LWE-based scheme. Recently the dual attack surpassed the primal attack in terms of concrete complexity for solving the underlying LWE problem for multiple cryptographic schemes, including Kyber. The dual attack consists of a reduction part and a distinguishing part. When estimating the cost of the distinguishing part, one has to estimate the expected cost of enumerating over a certain number of positions of the secret key. Our contribution consists of giving a polynomial-time approach for calculating the expected complexity of such an enumeration procedure. This allows us to revise the complexity of the dual attack on the LWE-based protocols Kyber, Saber and TFHE. For all these schemes we improve upon the total bit-complexity in both the classical and the quantum setting. As our method of calculating the expected cost of enumeration is fairly general, it might be of independent interest in other areas of cryptography or even in other research areas.
Expand
Chloé Hébant, David Pointcheval, Robert Schädlich
ePrint Report ePrint Report
When multiple users have power or rights, there is always the risk of corruption or abuse. Whereas there is no solution to avoid those malicious behaviors, from the users themselves or from external adversaries, one can strongly deter them with tracing capabilities that will later help to revoke the rights or negatively impact the reputation. On the other hand, privacy is an important issue in many applications, which seems in contradiction with traceability. In this paper, we first extend usual tracing techniques based on codes so that not just one contributor can be traced but the full collusion. In a second step, we embed suitable codes into a set $\mathcal V$ of vectors in such a way that, given a vector $\mathbf U \in \mathsf{span}(\mathcal V)$, the underlying code can be used to efficiently find a minimal subset $\mathcal X \subseteq \mathcal V$ such that $\mathbf U \in \mathsf{span}(\mathcal X)$. To meet privacy requirements, we then make the vectors of $\mathsf{span}(\mathcal V)$ anonymous while keeping the efficient tracing mechanism. As an interesting application, we formally define the notion of linearly-homomorphic group signatures and propose a construction from our codes: multiple signatures can be combined to sign any linear subspace in an anonymous way, but a tracing authority is able to trace back all the contributors involved in the signatures of that subspace.
Expand
Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, Paul Stankovski Wagner
ePrint Report ePrint Report
We study the notion of anonymous credentials with Publicly Auditable Privacy Revocation (PAPR). PAPR credentials simultaneously provide conditional user privacy and auditable privacy revocation. The first property implies that users keep their identity private when authenticating unless and until an appointed authority requests to revoke this privacy, retroactively. The second property enforces that auditors can verify whether or not this authority has revoked privacy from an issued credential (i.e. learned the identity of the user who owns that credential), holding the authority accountable. In other words, the second property enriches conditionally anonymous credential systems with transparency by design, effectively discouraging such systems from being used for mass surveillance. In this work, we introduce the notion of a PAPR anonymous credential scheme, formalize it as an ideal functionality, and present constructions that are provably secure under standard assumptions in the Universal Composability framework. The core tool in our PAPR construction is a mechanism for randomly selecting an anonymous committee which users secret share their identity information towards, while hiding the identities of the committee members from the authority. As a consequence, in order to initiate the revocation process for a given credential, the authority is forced to post a request on a public bulletin board used as a broadcast channel to contact the anonymous committee that holds the keys needed to decrypt the identity connected to the credential. This mechanism makes the user de-anonymization publicly auditable.
Expand
Kaizhan Lin, Jianming Lin, Shiping Cai, Weize Wang, Chang-An Zhao
ePrint Report ePrint Report
Recently, SIKE was broken by the Castryck-Decru attack in polynomial time. To avoid this attack, Fouotsa proposed a SIDH-like scheme called M-SIDH, which hides the information of auxiliary points. The countermeasure also leads to huge parameter sizes, and correspondingly the public key size is relatively large.

In this paper, we present several new techniques to compress the public key of M-SIDH. Our method to compress the key is reminiscent of public-key compression in SIDH/SIKE, including torsion basis generation, pairing computation and discrete logarithm computation. We also prove that compressed M-SIDH is secure if M-SIDH is secure.

Experimental results showed that our approach fits well with compressed M-SIDH. It should be noted that most techniques proposed in this paper could be also utilized into other SIDH-like protocols.
Expand

07 February 2023

Sarani Bhattacharya, Dilip Kumar Shanmugasundaram Veeraraghavan, Shivam Bhasin, Debdeep Mukhopadhyay
ePrint Report ePrint Report
Modern day smart phones are used for performing several sensitive operations, including online payments. Hence, the underlying cryptographic libraries are expected to adhere to proper security measures to ensure that there are no exploitable leakages. In particular, the implementations should be constant time to prevent subsequent timing based side channel analysis which can leak secret keys. Unfortunately, we unearth in this paper a glaring timing variation present in the Bouncy-Castle implementation of RSA like ciphers which is based on the BigInteger Java library to support large number theoretic computations. We follow up the investigation with a step-by-step procedure to exploit the timing variations to retrieve the complete secret of windowed RSA-2048 implementation. The entire analysis is possible with a single set of timing observation, implying that the timing observation can be done at the onset, followed by some post processing which does not need access to the phone. We have validated our analysis on Android Marshmallow 6.0, Nougat 7.0 and Oreo 8.0 versions. Interestingly, we note that for newer phones the timing measurement is more accurate leading to faster key retrievals.
Expand
Sabyasachi Dey, Hirenra Kumar Garai, Subhamoy Maitra
ePrint Report ePrint Report
In this paper we present several analyses on ChaCha, a software stream cipher. First, we consider a divide-and-conquer approach on the secret key bits by partitioning them. The partitions are based on multiple input-output differentials to obtain a significantly improved attack on 6-round ChaCha256 with a complexity of 2^{99.48}. It is 2^{40} times faster than the currently best known attack. Note that, this is the first time an attack could be mounted on reduced round ChaCha with a complexity significantly less than 2^{k}{2}, where the secret key is of $k$ bits. Further, we note that all the attack complexities related to ChaCha are theoretically estimated in general and there are several questions in this regard as pointed out by Dey et al. in Eurocrypt 2022. In this regard, we propose a toy version of ChaCha, with a 32-bit secret key, on which the attacks can be implemented completely to verify whether the theoretical estimates are justified. This idea is implemented for our proposed attack on 6 rounds. Finally, we show that it is possible to estimate the success probabilities of these kinds of PNB-based differential attacks more accurately. Our methodology explains how different cryptanalytic results can be evaluated with better accuracy rather than claiming (Aumasson et al., 2008) that the success probability is significantly better than 50%.
Expand
Shantanu Sharma, Yin Li, Sharad Mehrotra, Nisha Panwar, Dhrubajyoti Ghosh, Peeyush Gupta
ePrint Report ePrint Report
This paper proposes Prism, Private Verifiable Set Computation over Multi-Owner Outsourced Databases, a secret sharing based approach to compute private set operations (i.e., intersection and union), as well as aggregates over outsourced databases belonging to multiple owners. Prism enables data owners to pre-load the data onto non-colluding servers and exploits the additive and multiplicative properties of secret-shares to compute the above-listed operations in (at most) two rounds of communication between the servers (storing the secret-shares) and the querier, resulting in a very efficient implementation. Also, Prism does not require communication among the servers and supports result verification techniques for each operation to detect malicious adversaries. Experimental results show that Prism scales both in terms of the number of data owners and database sizes, to which prior approaches do not scale.
Expand
Alexandra Ciobanu, Marina Stefiuc
ePrint Report ePrint Report
Proposed by Thang and Binh (NICS, 2015 ), DBTRU is a variant of NTRU, where the integer polynomial ring is replaced by two binary truncated polynomial rings GF(2)[x]/(x^n + 1). DBTRU has significant advantages over NTRU in terms of security and performance. NTRU is a probabilistic public key cryptosystem having security related to some hard problems in lattices. In this paper we will present a polynomial-time linear algebra attack on the DBTRU cryptosystem which can break DBTRU for all recommended parameter choices and the plaintext can be obtained in less than one second using a single PC and this specific attack.
Expand
Elisa Giurgea, Tudor Hutu, Emil Simion
ePrint Report ePrint Report
In the current context of the increasing need for data privacy and quantum computing no longer being just a novel concept, Fully Homomorphic Encryption presents us with numerous quantum-secure schemes which have the concept of enabling data processing over encrypted data while not decrypting it behind. While not entirely usable at the present time, recent research has underlined its practical uses applied to databases, cloud computing, machine learning, e-voting, and IoT computing. In this paper, we are covering the current status of research and presenting the leading implemented solutions for subjects related to data privacy in the before-mentioned areas while emphasizing their positive results and possible drawbacks subsequently discovered by the research community.
Expand
Hannah Davis, Christopher Patton, MIke Rosulek, Phillipp Schoppmann
ePrint Report ePrint Report
The modern Internet is built on systems that incentivize collection of information about users. In order to minimize privacy loss, it is desirable to prevent these systems from collecting more information than is required for the application. The promise of multi-party computation is that data can be aggregated without revealing individual measurements to the data collector. This work offers a provable security treatment for "Verifiable Distributed Aggregation Functions (VDAFs)", a class of multi-party computation protocols being considered for standardization by the IETF.

We propose a formal framework for the analysis of VDAFs and apply it to two candidate protocols. The first is based on the Prio system of Corrigan-Gibbs and Boneh (NSDI 2017). Prio is fairly mature and has been deployed in real-world applications. We prove that, with only minor changes, the current draft of the standardized version achieves our security goals. The second candidate is the recently proposed Poplar system from Boneh et al. (IEEE S\&P 2021). The deployability of Poplar is less certain. One difficulty is that the interactive step requires two rounds of broadcast messages, whereas Prio requires just one. This makes Poplar less suitable for many deployment scenarios. We show the round complexity can be improved, at the cost of higher bandwidth.
Expand
Noam Mazor
ePrint Report ePrint Report
Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only authorized subsets of the parties learn the secret. Evolving secret sharing schemes (Komargodski, Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the parties arrive in an online fashion, and there is no a-priory bound on the number of parties. An important complexity measure of a secret sharing scheme is the share size, which is the maximum number of bits that a party may receive as a share. While there has been a significant progress in recent years, the best constructions for both secret sharing and evolving secret sharing schemes have a share size that is exponential in the number of parties. On the other hand, the best lower bound, by Csirmaz [Eurocrypt ’95], is sub-linear. In this work, we give a tight lower bound on the share size of evolving secret sharing schemes. Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound on evolving secret sharing.
Expand
Prabhanjan Ananth, Fatih Kaleoglu, Qipeng Liu
ePrint Report ePrint Report
The powerful no-cloning principle of quantum mechanics can be leveraged to achieve interesting primitives, referred to as unclonable primitives, that are impossible to achieve classically. In the past few years, we have witnessed a surge of new unclonable primitives. While prior works have mainly focused on establishing feasibility results, another equally important direction, that of understanding the relationship between different unclonable primitives is still in its nascent stages. Moving forward, we need a more systematic study of unclonable primitives. To this end, we introduce a new framework called cloning games. This framework captures many fundamental unclonable primitives such as quantum money, copy-protection, unclonable encryption, single-decryptor encryption, and many more. By reasoning about different types of cloning games, we obtain many interesting implications to unclonable cryptography, including the following: 1. We obtain the first construction of information-theoretically secure single-decryptor encryption in the one-time setting. 2. We construct unclonable encryption in the quantum random oracle model based on BB84 states, improving upon the previous work, which used coset states. Our work also provides a simpler security proof for the previous work. 3. We construct copy-protection for single-bit point functions in the quantum random oracle model based on BB84 states, improving upon the previous work, which used coset states, and additionally, providing a simpler proof. 4. We establish a relationship between different challenge distributions of copy-protection schemes and single-decryptor encryption schemes. 5. Finally, we present a new construction of one-time encryption with certified deletion.
Expand
Rebecca Schwerdt, Laurin Benz, Wasilij Beskorovajnov, Sarai Eilebrecht, Jörn Müller-Quade, Astrid Ottenhues
ePrint Report ePrint Report
Secure communication is gained by combining encryption with authentication. In real-world applications encryption commonly takes the form of KEM-DEM hybrid encryption, which is combined with ideal authentication. The pivotal question is how weak the employed key encapsulation mechanism (KEM) is allowed to be to still yield universally composable (UC) secure communication when paired with symmetric encryption and ideal authentication. This question has so far been addressed for public-key encryption (PKE) only, showing that encryption does not need to be stronger than sender-binding CPA, which binds the CPA secure ciphertext non-malleably to the sender ID. For hybrid encryption, prior research unanimously reaches for CCA2 secure encryption which is unnecessarily strong. Answering this research question is vital to develop more efficient and feasible protocols for real-world secure communication and thus enable more communication to be conducted securely. In this paper we use ideas from the PKE setting to develop new answers for hybrid encryption. We develop a new and significantly weaker security notion—sender-binding CPA for KEMs—which is still strong enough for secure communication. By using game-based notions as building blocks, we attain secure communication in the form of ideal functionalities with proofs in the UC-framework. Secure communication is reached in both the classic as well as session context by adding authentication and one-time/replayable CCA secure symmetric encryption respectively. We furthermore provide an efficient post-quantum secure LWE-based construction in the standard model giving an indication of the real-world benefit resulting from our new security notion. Overall we manage to make significant progress on discovering the minimal security requirements for hybrid encryption components to facilitate secure communication.
Expand
Danielle Movsowitz Davidow, Yacov Manevich
ePrint Report ePrint Report
In permissioned digital currencies such as Central Bank Digital Currencies (CBDCs), data disclosure is essential for gathering aggregated statistics about the transactions and activities of the users. These statistics are later used to set regulations. Differential privacy techniques have been proposed to preserve individuals’ privacy while still making aggregative statistical analysis possible. Recently, privacy-preserving payment systems fit for CBDCs have been proposed. While preserving the privacy of the sender and recipient, they also prevent any insightful learning from their data. Thus, they are ill-qualified to be incorporated with a system that mandates publishing statistical data. We show that differential privacy and privacy-preserving payments can coexist even if one of the participating parties (i.e., the user or the data analyst) is malicious. We propose a modular scheme that incorporates verifiable local differential privacy techniques into a privacy-preserving payment system. Thus, although the noise is added directly by the user (i.e., the data subject), we prevent her from manipulating her response and enforce the integrity of the noise generation via a novel protocol.
Expand
Irimia Alexandru-Vasile
ePrint Report ePrint Report
This article presents and explains methodologies that can be employed to recover information from encrypted files generated by ransomware based on cryptanalytic techniques. By using cryptanalysis and related knowledge as much as possible, the methodology's goal is to use static and dynamic analysis as little as possible. We present three case studies that illustrate different approaches that can be used to recover the encrypted data.
Expand
Ionuț Roșca, Alexandra-Ina Butnaru, Emil Simion
ePrint Report ePrint Report
Since the proposal of Bitcoin in 2008, the world has seen accelerated growth in the field of blockchain and discovered its potential to immensely transform most industries, one of the first and most important being finance. The blockchain trilemma states that blockchains can have security, scalability, and decentralization, but never all three at the same time, in the same amount. At the moment, the most successful blockchains have a lack of scalability that researchers and developers try to alleviate by solutions like layer 2s. Most of these solutions rely on cryptographic primitives and technologies, like collision-free hash function or zero-knowledge proofs. In this paper we explore a few of the most popular solutions available now, their improvements to scalability, their drawbacks and security risks.
Expand
◄ Previous Next ►