IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
05 March 2019
Manu Drijvers, Gregory Neven
Eduard Hauck, Eike Kiltz, Julian Loss
SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, TaiRong Shi
Joseph Jaeger, Stefano Tessaro
This paper initiates the study of time-memory trade-offs for basic symmetric cryptography. We show that schemes like counter-mode encryption, which are affected by the Birthday Bound, become more secure (in terms of time complexity) as the attacker's memory is reduced.
One key step of this work is a generalization of the Switching Lemma: For adversaries with $S$ bits of memory issuing $q$ distinct queries, we prove an $n$-to-$n$ bit random function indistinguishable from a permutation as long as $S \times q \ll 2^n$. This result assumes a combinatorial conjecture, which we discuss, and implies right away trade-offs for deterministic, stateful versions of CTR and OFB encryption.
We also show an unconditional time-memory trade-off for the security of randomized CTR based on a secure PRF. Via the aforementioned conjecture, we extend the result to assuming a PRP instead, assuming only one-block messages are encrypted.
Our results solely rely on standard PRF/PRP security of an underlying block cipher. We frame the core of our proofs within a general framework of indistinguishability for streaming algorithms which may be of independent interest.
Atlanta, USA, 24 August 2019
Submission deadline: 25 May 2019
02 March 2019
Prague, Czech Republic, 26 July - 28 July 2019
Submission deadline: 15 April 2019
Notification: 23 May 2019
Darmstadt, Germany, 17 May - 18 May 2019
Submission deadline: 18 March 2019
Notification: 25 March 2019
Kanazawa University, Japan
An appointee is expected on duty on July 1st, 2019 or at an early possible time after that.
Research budget:: In case of tenure-track assistant professor, Kanazawa University plans to provide a start-up research fund of approximately 800,000 JPY in the first year in addition to faculty research expense.
Closing date for applications: 15 March 2019
Contact: Masahiro Mambo (Contact information can be found below.)
More information: https://www.se.kanazawa-u.ac.jp/en/researchers/pdf/20190315_ec_tt_en.pdf
Simula UiB
- algorithmic and theoretical aspects of side-channel security
- cryptographic protocols for privacy-preserving applications
- privacy-preserving pairing-based and lattice-based protocols for applications like blockchain
The PhD students will enter the PhD program of the Department of informatics at the University of Bergen. Applications must be submitted via https://www.simula.no/about/job/call-phd-students-cryptography-simula-uib
Closing date for applications: 30 April 2019
Contact: For questions and inquiries, please contact
Martijn Stam, email: martijn (at) simula.no
or
Helger Lipmaa, email: helger.lipmaa (at) gmail.com
More information: https://www.simula.no/about/job/call-phd-students-cryptography-simula-uib
Information Security Group, Royal Holloway, University of London, UK
The postdoc will work alongside Martin Albrecht and other cryptographic researchers in the ISG on topics in lattice-based cryptography and related fields. One post is funded by a joint grant between Royal Holloway and Imperial College (Cong Ling) for bridging the gap between lattice-based cryptography and coding theory (starting date: 15 April or later). The second post is funded by an EPSRC grant on investigating the security of lattice-based and post-quantum cryptographic constructions (starting date: 1 June or later). Applicants with a strong background in all areas of cryptography are encouraged to apply.
Applicants should have already completed, or be close to completing, a PhD in a relevant discipline. Applicants should have an outstanding research track record in cryptography. Applicants should be able to demonstrate scientific creativity, research independence, and the ability to communicate their ideas effectively in written and verbal form.
The ISG is one of the largest departments dedicated to information security in the world with 21 core academic staff in the department, as well as research and support staff. We work with many research partners in other departments and have circa 90 PhD students working on a wide range of security research, many of whom are fully funded through our Centre for Doctoral Training in Cyber Security. We have a strong, vibrant, embedded and successful multi-disciplinary research profile spanning from cryptography to systems security and social aspects of security. This vibrant environment incorporates visiting researchers, weekly research seminars, weekly reading groups, PhD seminars and mini conferences, the WISDOM group (Women in the Security Domain Or Mathematics) and we are proud of our collegial atmosphere and approach.
Closing date for applications: 5 April 2019
Contact: Martin Albrecht, martin.albrecht _AT_ royalholloway.ac.uk
More information: https://jobs.royalholloway.ac.uk/vacancy.aspx?ref=0219-081
IMDEA Software Institute, Madrid, Spain
Who should apply: Applicants should be MSc or PhD students in computer science, mathematics or a related discipline. Strong knowledge of cryptography and solid programming skills are required. Familiarity with cryptographic protocols, cryptography implementation libraries or C++ will be considered as a plus.
Working at IMDEA Software: The position is based in Madrid, Spain, where the IMDEA Software Institute is situated. The institute provides for travel expenses and an internationally competitive stipend. The working language at the institute is English.
Dates: The internship duration is intended to be for 4-6 months (with some flexibility). The ideal starting period is from May 2019.
How to apply: Applicants interested in the position should submit their application at https://careers.imdea.org/software/ using reference code 2019-02-intern-crypto. Deadline for applications is April 15, 2019. Review of applications will begin immediately.
Closing date for applications: 15 April 2019
Contact: For enquiries about the position, please contact:
Dario Fiore, dario.fiore (at) imdea.org
Matteo Campanelli, matteo.campanelli (at) imdea.org
More information: https://software.imdea.org/open_positions/2019-02-intern-crypto.html
Institute for Quantum Computing at University of Waterloo
https://uwaterloo.ca/institute-for-quantum-computing/positions/open-quantum-safe-liboqs-cryptographic-research-architect
Closing date for applications: 30 August 2019
Contact: Michele Mosca: michele.mosca (at) uwaterloo.ca
Douglas Stebila: dstebila (at) uwaterloo.ca
More information: https://uwaterloo.ca/institute-for-quantum-computing/positions/open-quantum-safe-liboqs-cryptographic-research-architect
University of Surrey, UK
The Department has a large secure systems research group, led by Professor Steve Schneider, with expertise in security by design, cryptography, authentication, verification, distributed ledger technologies, trusted systems, IoT security, program analysis and cloud security. Professor Yaochu Jin also leads a research group specialising in machine learning, complex systems and networks, Bayesian learning, neuroscience, evolutionary computation and applications of machine learning.
Closing date for applications: 17 March 2019
Contact: Helen Treharne
More information: https://jobs.surrey.ac.uk/vacancy.aspx?ref=010019
The University of York (UK)
The topic is related to \"Opportunities and risks in the application of machine and deep learning to security screening\". The Government Office for Science offers UK Intelligence Community (IC) Postdoctoral Research Fellowships to outstanding early career science or engineering researchers. These Fellowships are designed to promote unclassified basic research in areas of interest to the intelligence, security and defence communities.
UK IC Postdoctoral Research Fellowships can be held on a job share basis, if two suitable candidates are available to work on the project. UK IC Postdoctoral Research Fellowships are for a two-year period with an evaluation after the first year.
Applications are capped at a maximum contribution of £100,000 per year, at 80% of Full Economic Costs.
Applicants have no nationality restrictions. The host institution of the research fellowship will be responsible for securing all necessary work permits and related costs.
The Department of Computer Science at University of York has an established reputation for conducting research that has real impact in a wide range of sectors; in the Research Excellence Framework (REF) 2014, we were ranked 5th for impact, 6th for environment and 7th in the UK overall.
The deadline for proposal submission is April 1, 2019. (Our Centre Website: www.cs.york.ac.uk/security)
Closing date for applications: 10 March 2019
Contact: Interested candidates should contact Professor Delaram Kahrobaei (Chair of Cyber Security at University of York) delaram.kahrobaei (at) york.ac.uk as soon as possible to develop a proposal.
Institute of Information Security, University of Stuttgart, Germany
Ph.D. and Postdoc Positions
in applied cryptography, with a focus on
- Multi-Party Computation,
- Zero-Knowledge Proofs,
- Fully Homomorphic Encryption,
and applications thereof.
The positions are available immediately with an internationally competitive salary, paid according to the German public salary scale TVL-E13 or TVL-E14 (depending on the candidate\'s qualification). Appointment periods follow the German science appointment regulations, ranging from one year to up to six years.
The Institute of Information Security offers a creative international environment for top-level international research in Germany\'s high-tech region.
The successful candidate should have a Master\'s degree or a Ph.D. (or should be very close to completion thereof) in Computer Science, Mathematics, Cyber Security, or a related field. We value excellent analytical and mathematical skills. Knowledge in cryptography, and in particular, one of the mentioned fields, is an asset. Knowledge of German is not required. We can offer positions with and without teaching obligations.
The deadline for applications is
March 24th, 2019.
Late applications will be considered until the positions are filled.
Closing date for applications: 24 March 2019
Contact: Prof. Ralf Kuesters
ralf.kuesters (at) sec.uni-stuttgart.de
https://sec.uni-stuttgart.de
More information: https://sec.uni-stuttgart.de/jobopenings
Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, F - 13541 Gardanne France
The main objective of this PhD thesis is to design protections to improve the security of SIKE (Supersingular Isogeny Key Encapsulation) implementations against side-channel and fault attacks.
Walks in elliptic curve isogeny graphs can be used to establish a shared secret with a Diffie-Hellman like protocol. SIKE is a key encapsulation suite based on this asymmetric cryptography. It is executed on conventional computer and is thought to be secure against an attack by a quantum computer. NIST has initiated a competitive \"post-quantum\" cryptography standardisation. These algorithms were built to avoid cryptanalysis. But, attackers may explore alternative attack methods that exploit physical access to implementation.
Electromagnetic radiation analysis of deciphering or fault injection are examples of such attacks. There exist protections to hide secrets which are used by implementations of classical cryptography. But, there are only few counter-measures to protect SIKE implementations and the threat of physical attacks against isogeny-based cryptography is not well known, up to now. This thesis will address these two problems.
The PhD student will begin by studying the SIKE protocol and existing implementations. He/She will have to identify existing physical attack propositions and to provide new attack methods. To refine the threat characterisation, he/she will build attack demonstrators based on side-channel analysis and/or fault injection. He/She will propose counter-measures that could be algorithmic, software or hardware methods to protect SIKE implementations.
The SAS \"Secure Architectures and Systems\" research group is located in Gardanne (FRANCE). It is a joint CEA and EMSE team with state-of-art equipment to perform side-channel and fault attacks. PhD student supervisors are Nadia El-Mrabet (EMSE/SAS), Luca De Feo (UVSQ/CRYPTO) and Simon Pontié (CEA/SAS).
Closing date for applications: 25 April 2019
Contact: Simon PONTIE, Simon.PONTIE (at) cea.fr
Singapore University of Technology and Design (SUTD), Singapore
Closing date for applications: 30 April 2019
Contact: Prof. Jianying Zhou
jianying_zhou (at) sutd.edu.sg
More information: http://jianying.space/
28 February 2019
Anne Broadbent, Sébastien Lord
We formally define uncloneable encryption, and show how to achieve it using Wiesner's conjugate coding, combined with a quantum-secure pseudorandom function (qPRF). Modelling the qPRF as a quantum random oracle, we show security by adapting techniques from the quantum one-way-to-hiding lemma, as well as using bounds from quantum monogamy-of-entanglement games.
Achiya Bar-On, Orr Dunkelman, Nathan Keller, Ariel Weizman
Several papers aimed at formalizing the DL attack, and formulating assumptions under which its complexity can be estimated accurately. These culminated in a recent work of Blondeau, Leander, and Nyberg (Journal of Cryptology, 2017) which obtained an accurate expression under the sole assumption that the two subciphers $E_0$ and $E_1$ are independent.
In this paper we show that in many cases, dependency between the two subcipher s significantly affects the complexity of the DL attack, and in particular, can be exploited by the adversary to make the attack more efficient. We present the Differential-Linear Connectivity Table (DLCT) which allows us to take into account the dependency between the two subciphers, and to choose the differential characteristic in $E_0$ and the linear approximation in $E_1$ in a way that takes advantage of this dependency. We then show that the DLCT can be constructed efficiently using the Fast Fourier Transform. Finally, we demonstrate the strength of the DLCT by using it to improve differential-linear attacks on ICEPOLE and on 8-round DES, and to explain published experimental results on Serpent and on the CAESAR finalist Ascon which did not comply with the standard differential-linear framework.
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, Takashi Yamakawa
In this work, we make progress of constructing (DV, DP, PP)-NIZKs with varying flavors from DH-type assumptions. Our results are summarized as follows: \begin{itemize} \item DV-NIZKs for $\NP$ from the CDH assumption over pairing-free groups. This is the first construction of such NIZKs on pairing-free groups and resolves the open problem posed by Kim and Wu (CRYPTO'18). \item DP-NIZKs for $\NP$ with short proof size from a DH-type assumption over pairing groups. Here, the proof size has an additive-overhead $|C|+\poly(\secpar)$ rather then an multiplicative-overhead $|C| \cdot \poly(\secpar)$. This is the first construction of such NIZKs (including CRS-NIZKs) that does not rely on the LWE assumption, fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. \item PP-NIZK for $\NP$ with short proof size from the DDH assumption over pairing-free groups. This is the first PP-NIZK that achieves a short proof size from a weak and static DH-type assumption such as DDH. Similarly to the above DP-NIZK, the proof size is $|C|+\poly(\secpar)$. This too serves as a solution to the open problem posed by Kim and Wu (CRYPTO'18). \end{itemize} Along the way, we construct two new homomorphic authentication (HomAuth) schemes which may be of independent interest.