International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

05 March 2019

Manu Drijvers, Gregory Neven
ePrint Report ePrint Report
Multi-signatures allow a group of signers to jointly sign a message in a compact and efficiently verifiable signature, ideally independent of the number of signers in the group. We present the first provably secure forward-secure multi-signature scheme by deriving a forward-secure signature scheme from the hierarchical identity-based encryption of Boneh, Boyen, and Goh (Eurocrypt 2005) and showing how the signatures in that scheme can be securely composed. Multi-signatures in our scheme contain just two group elements (one from each of the base groups) and require one exponentation and three pairing computations to verify.
Expand
Eduard Hauck, Eike Kiltz, Julian Loss
ePrint Report ePrint Report
We propose a modular security treatment of blind signatures derived from linear identification schemes in the random oracle model. To this end, we present a general framework that captures several well known schemes from the literature and allows to prove their security. Our modular security reduction introduces a new security notion for identification schemes called One-More-Man In the Middle Security which we show equivalent to the classical One-More-Unforgeability notion for blind signatures. We also propose a generalized version of the Forking Lemma due to Bellare and Neven (CCS 2006) and show how it can be used to greatly improve the understandability of the classical security proofs for blind signatures schemes by Pointcheval and Stern (Journal of Cryptology 2000).
Expand
SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, TaiRong Shi
ePrint Report ePrint Report
Cube attack is an important cryptanalytic technique against symmetric cryptosystems, especially for stream ciphers. The key step in cube attack is recovering superpoly. However, when cube size is large, the large time complexity of recovering the exact algebraic normal form (ANF) of superpoly confines cube attack. At CRYPTO 2017, Todo et al. applied conventional bit-based division property (CBDP) into cube attack which could exploit large cube sizes. However, CBDP based cube attacks cannot ensure that the superpoly of a cube is non-constant. Hence the key recovery attack may be just a distinguisher. Moreover, CBDP based cube attacks can only recover partial ANF coefficients of superpoly. The time complexity of recovering the reminding ANF coefficients is very large, because it has to query the encryption oracle and sum over the cube set. To overcome these limits, in this paper, we propose a practical method to recover the ANF coefficients of superpoly. This new method is developed based on bit-based division property using three subsets (BDPT) proposed by Todo at FSE 2016. We apply this new method to reduced-round Trivium. To be specific, the time complexity of recovering the superpoly of 832-round Trivium at CRYPTO 2017 is reduced from $2^{77}$ to practical, and the time complexity of recovering the superpoly of 839-round Trivium at CRYPTO 2018 is reduced from $2^{79}$ to practical. Then, we propose a theoretical attack which can recover the superpoly of Trivium up to 842 round. As far as we know, this is the first time that the superpoly can be recovered for Trivium up to 842 rounds.
Expand
Joseph Jaeger, Stefano Tessaro
ePrint Report ePrint Report
Concrete security proofs give upper bounds on the attacker's advantage as a function of its time/query complexity. Cryptanalysis suggests however that other resource limitations - most notably, the attacker's memory - could make the achievable advantage smaller, and thus these proven bounds too pessimistic. Yet, handling memory limitations has eluded existing security proofs.

This paper initiates the study of time-memory trade-offs for basic symmetric cryptography. We show that schemes like counter-mode encryption, which are affected by the Birthday Bound, become more secure (in terms of time complexity) as the attacker's memory is reduced.

One key step of this work is a generalization of the Switching Lemma: For adversaries with $S$ bits of memory issuing $q$ distinct queries, we prove an $n$-to-$n$ bit random function indistinguishable from a permutation as long as $S \times q \ll 2^n$. This result assumes a combinatorial conjecture, which we discuss, and implies right away trade-offs for deterministic, stateful versions of CTR and OFB encryption.

We also show an unconditional time-memory trade-off for the security of randomized CTR based on a secure PRF. Via the aforementioned conjecture, we extend the result to assuming a PRP instead, assuming only one-block messages are encrypted.

Our results solely rely on standard PRF/PRP security of an underlying block cipher. We frame the core of our proofs within a general framework of indistinguishability for streaming algorithms which may be of independent interest.
Expand
Atlanta, USA, 24 August 2019
Event Calendar Event Calendar
Event date: 24 August 2019
Submission deadline: 25 May 2019
Expand

02 March 2019

Prague, Czech Republic, 26 July - 28 July 2019
Event Calendar Event Calendar
Event date: 26 July to 28 July 2019
Submission deadline: 15 April 2019
Notification: 23 May 2019
Expand
Darmstadt, Germany, 17 May - 18 May 2019
Event Calendar Event Calendar
Event date: 17 May to 18 May 2019
Submission deadline: 18 March 2019
Notification: 25 March 2019
Expand
Kanazawa University, Japan
Job Posting Job Posting
Kanazawa University, Japan, invites applications for an associate professor position or a tenure-track assistant professor position in advanced research area of information security, such as IT Security and Cryptography.

An appointee is expected on duty on July 1st, 2019 or at an early possible time after that.

Research budget:: In case of tenure-track assistant professor, Kanazawa University plans to provide a start-up research fund of approximately 800,000 JPY in the first year in addition to faculty research expense.

Closing date for applications: 15 March 2019

Contact: Masahiro Mambo (Contact information can be found below.)

More information: https://www.se.kanazawa-u.ac.jp/en/researchers/pdf/20190315_ec_tt_en.pdf

Expand
Simula UiB
Job Posting Job Posting
Simula UiB has up to four three-year PhD positions available in the field of cryptography. The following specific topics are of particular interest:

- algorithmic and theoretical aspects of side-channel security

- cryptographic protocols for privacy-preserving applications

- privacy-preserving pairing-based and lattice-based protocols for applications like blockchain

The PhD students will enter the PhD program of the Department of informatics at the University of Bergen. Applications must be submitted via https://www.simula.no/about/job/call-phd-students-cryptography-simula-uib

Closing date for applications: 30 April 2019

Contact: For questions and inquiries, please contact

Martijn Stam, email: martijn (at) simula.no

or

Helger Lipmaa, email: helger.lipmaa (at) gmail.com

More information: https://www.simula.no/about/job/call-phd-students-cryptography-simula-uib

Expand
Information Security Group, Royal Holloway, University of London, UK
Job Posting Job Posting
Two Postdoc positions are available in the Information Security Group at Royal Holloway, University of London, UK.

The postdoc will work alongside Martin Albrecht and other cryptographic researchers in the ISG on topics in lattice-based cryptography and related fields. One post is funded by a joint grant between Royal Holloway and Imperial College (Cong Ling) for bridging the gap between lattice-based cryptography and coding theory (starting date: 15 April or later). The second post is funded by an EPSRC grant on investigating the security of lattice-based and post-quantum cryptographic constructions (starting date: 1 June or later). Applicants with a strong background in all areas of cryptography are encouraged to apply.

Applicants should have already completed, or be close to completing, a PhD in a relevant discipline. Applicants should have an outstanding research track record in cryptography. Applicants should be able to demonstrate scientific creativity, research independence, and the ability to communicate their ideas effectively in written and verbal form.

The ISG is one of the largest departments dedicated to information security in the world with 21 core academic staff in the department, as well as research and support staff. We work with many research partners in other departments and have circa 90 PhD students working on a wide range of security research, many of whom are fully funded through our Centre for Doctoral Training in Cyber Security. We have a strong, vibrant, embedded and successful multi-disciplinary research profile spanning from cryptography to systems security and social aspects of security. This vibrant environment incorporates visiting researchers, weekly research seminars, weekly reading groups, PhD seminars and mini conferences, the WISDOM group (Women in the Security Domain Or Mathematics) and we are proud of our collegial atmosphere and approach.

Closing date for applications: 5 April 2019

Contact: Martin Albrecht, martin.albrecht _AT_ royalholloway.ac.uk

More information: https://jobs.royalholloway.ac.uk/vacancy.aspx?ref=0219-081

Expand
IMDEA Software Institute, Madrid, Spain
Job Posting Job Posting
The IMDEA Software Institute (Madrid, Spain) invites applications for a research internship in the area of Cryptography. The successful candidate will join the cryptography group led by Prof. Dario Fiore to work on a project within the area of zero-knowledge proofs and their applications to blockchain protocols.

Who should apply: Applicants should be MSc or PhD students in computer science, mathematics or a related discipline. Strong knowledge of cryptography and solid programming skills are required. Familiarity with cryptographic protocols, cryptography implementation libraries or C++ will be considered as a plus.

Working at IMDEA Software: The position is based in Madrid, Spain, where the IMDEA Software Institute is situated. The institute provides for travel expenses and an internationally competitive stipend. The working language at the institute is English.

Dates: The internship duration is intended to be for 4-6 months (with some flexibility). The ideal starting period is from May 2019.

How to apply: Applicants interested in the position should submit their application at https://careers.imdea.org/software/ using reference code 2019-02-intern-crypto. Deadline for applications is April 15, 2019. Review of applications will begin immediately.

Closing date for applications: 15 April 2019

Contact: For enquiries about the position, please contact:

Dario Fiore, dario.fiore (at) imdea.org

Matteo Campanelli, matteo.campanelli (at) imdea.org

More information: https://software.imdea.org/open_positions/2019-02-intern-crypto.html

Expand
Institute for Quantum Computing at University of Waterloo
Job Posting Job Posting
This position is available immediately in Professor Mosca’s Research group. You will be working with a team of researchers and developers from academia and industry on the Open Quantum Safe project (openquantumsafe.org). You will help integrate new post-quantum cryptographic algorithms into the libOQS open-source library, and design and implement techniques for evaluating and benchmarking these cryptographic algorithms in a variety of contexts. You will be required to participate in weekly sprint meetings and perform software development tasks assigned by the project team lead, ensuring that all code contributions developed by self or integrated from 3rd party contribution sources adhere to a cohesive design and framework. The field of post-quantum cryptography is rapidly evolving, and you will need to track ongoing changes to algorithms due to peer review and advances by researchers via the the NIST Post-Quantum Cryptography project forum. Any significant findings relating to a particular PQ algorithm’s effectiveness or efficiency should be brought to the attention of team lead, and may be disclosed to other researchers in forum. In addition to algorithm research, tasks cover all aspects of the software development lifecycle and include design, programming cryptographic algorithms, integrating other cryptographic implementations into the libOQS framework, integrating libOQS into 3rd party opensource projects, testing, benchmarking and documentation. You may be required to take an ownership role in coordinating the development of a sub-component of the Open Quantum Safe project.

https://uwaterloo.ca/institute-for-quantum-computing/positions/open-quantum-safe-liboqs-cryptographic-research-architect

Closing date for applications: 30 August 2019

Contact: Michele Mosca: michele.mosca (at) uwaterloo.ca

Douglas Stebila: dstebila (at) uwaterloo.ca

More information: https://uwaterloo.ca/institute-for-quantum-computing/positions/open-quantum-safe-liboqs-cryptographic-research-architect

Expand
University of Surrey, UK
Job Posting Job Posting
This post offers an exciting opportunity for an appointment to strengthen the research of our existing research, for example at the interface between security and machine learning and in data science.

The Department has a large secure systems research group, led by Professor Steve Schneider, with expertise in security by design, cryptography, authentication, verification, distributed ledger technologies, trusted systems, IoT security, program analysis and cloud security. Professor Yaochu Jin also leads a research group specialising in machine learning, complex systems and networks, Bayesian learning, neuroscience, evolutionary computation and applications of machine learning.

Closing date for applications: 17 March 2019

Contact: Helen Treharne

More information: https://jobs.surrey.ac.uk/vacancy.aspx?ref=010019

Expand
The University of York (UK)
Job Posting Job Posting
If you are thinking of applying for such a fellowship, the Cyber Security group at the University of York would be very happy to talk to you about the possibility of hosting your fellowship with us.

The topic is related to \"Opportunities and risks in the application of machine and deep learning to security screening\". The Government Office for Science offers UK Intelligence Community (IC) Postdoctoral Research Fellowships to outstanding early career science or engineering researchers. These Fellowships are designed to promote unclassified basic research in areas of interest to the intelligence, security and defence communities.

UK IC Postdoctoral Research Fellowships can be held on a job share basis, if two suitable candidates are available to work on the project. UK IC Postdoctoral Research Fellowships are for a two-year period with an evaluation after the first year.

Applications are capped at a maximum contribution of £100,000 per year, at 80% of Full Economic Costs.

Applicants have no nationality restrictions. The host institution of the research fellowship will be responsible for securing all necessary work permits and related costs.

The Department of Computer Science at University of York has an established reputation for conducting research that has real impact in a wide range of sectors; in the Research Excellence Framework (REF) 2014, we were ranked 5th for impact, 6th for environment and 7th in the UK overall.

The deadline for proposal submission is April 1, 2019. (Our Centre Website: www.cs.york.ac.uk/security)

Closing date for applications: 10 March 2019

Contact: Interested candidates should contact Professor Delaram Kahrobaei (Chair of Cyber Security at University of York) delaram.kahrobaei (at) york.ac.uk as soon as possible to develop a proposal.

Expand
Institute of Information Security, University of Stuttgart, Germany
Job Posting Job Posting
The Institute of Information Security at University of Stuttgart offers several

Ph.D. and Postdoc Positions

in applied cryptography, with a focus on

- Multi-Party Computation,

- Zero-Knowledge Proofs,

- Fully Homomorphic Encryption,

and applications thereof.

The positions are available immediately with an internationally competitive salary, paid according to the German public salary scale TVL-E13 or TVL-E14 (depending on the candidate\'s qualification). Appointment periods follow the German science appointment regulations, ranging from one year to up to six years.

The Institute of Information Security offers a creative international environment for top-level international research in Germany\'s high-tech region.

The successful candidate should have a Master\'s degree or a Ph.D. (or should be very close to completion thereof) in Computer Science, Mathematics, Cyber Security, or a related field. We value excellent analytical and mathematical skills. Knowledge in cryptography, and in particular, one of the mentioned fields, is an asset. Knowledge of German is not required. We can offer positions with and without teaching obligations.

The deadline for applications is

March 24th, 2019.

Late applications will be considered until the positions are filled.

Closing date for applications: 24 March 2019

Contact: Prof. Ralf Kuesters

ralf.kuesters (at) sec.uni-stuttgart.de

https://sec.uni-stuttgart.de

More information: https://sec.uni-stuttgart.de/jobopenings

Expand
Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, F - 13541 Gardanne France
Job Posting Job Posting
Applications are invited for a 3 years PhD fellowship/scholarship at Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, Gardanne France. The position is available from 1 October 2019 or later.

The main objective of this PhD thesis is to design protections to improve the security of SIKE (Supersingular Isogeny Key Encapsulation) implementations against side-channel and fault attacks.

Walks in elliptic curve isogeny graphs can be used to establish a shared secret with a Diffie-Hellman like protocol. SIKE is a key encapsulation suite based on this asymmetric cryptography. It is executed on conventional computer and is thought to be secure against an attack by a quantum computer. NIST has initiated a competitive \"post-quantum\" cryptography standardisation. These algorithms were built to avoid cryptanalysis. But, attackers may explore alternative attack methods that exploit physical access to implementation.

Electromagnetic radiation analysis of deciphering or fault injection are examples of such attacks. There exist protections to hide secrets which are used by implementations of classical cryptography. But, there are only few counter-measures to protect SIKE implementations and the threat of physical attacks against isogeny-based cryptography is not well known, up to now. This thesis will address these two problems.

The PhD student will begin by studying the SIKE protocol and existing implementations. He/She will have to identify existing physical attack propositions and to provide new attack methods. To refine the threat characterisation, he/she will build attack demonstrators based on side-channel analysis and/or fault injection. He/She will propose counter-measures that could be algorithmic, software or hardware methods to protect SIKE implementations.

The SAS \"Secure Architectures and Systems\" research group is located in Gardanne (FRANCE). It is a joint CEA and EMSE team with state-of-art equipment to perform side-channel and fault attacks. PhD student supervisors are Nadia El-Mrabet (EMSE/SAS), Luca De Feo (UVSQ/CRYPTO) and Simon Pontié (CEA/SAS).

Closing date for applications: 25 April 2019

Contact: Simon PONTIE, Simon.PONTIE (at) cea.fr

Expand
Singapore University of Technology and Design (SUTD), Singapore
Job Posting Job Posting
PhD scholarship on cyber security is available in SUTD. Interested candidates please send your CV with a research statement to Prof. Jianying Zhou. Only short-listed candidates will be contacted for interview.

Closing date for applications: 30 April 2019

Contact: Prof. Jianying Zhou

jianying_zhou (at) sutd.edu.sg

More information: http://jianying.space/

Expand

28 February 2019

Anne Broadbent, Sébastien Lord
ePrint Report ePrint Report
Quantum information is well-known to achieve cryptographic feats that are unattainable using classical information alone. Here, we add to this repertoire by introducing a new cryptographic functionality called uncloneable encryption. This functionality allows the encryption of a classical message such that two collaborating but isolated adversaries are prevented from simultaneously recovering the message, even when the encryption key is revealed. Clearly, such functionality is unattainable using classical information alone.

We formally define uncloneable encryption, and show how to achieve it using Wiesner's conjugate coding, combined with a quantum-secure pseudorandom function (qPRF). Modelling the qPRF as a quantum random oracle, we show security by adapting techniques from the quantum one-way-to-hiding lemma, as well as using bounds from quantum monogamy-of-entanglement games.
Expand
Achiya Bar-On, Orr Dunkelman, Nathan Keller, Ariel Weizman
ePrint Report ePrint Report
Differential cryptanalysis and linear cryptanalysis are the two best-known techniques for cryptanalysis of block ciphers. In 1994, Langford and Hellman introduced the differential-linear (DL) attack based on dividing the attacked cipher $E$ into two subciphers $E_0$ and $E_1$ and combining a differential characteristic for $E_0$ with a linear approximation for $E_1$ into an attack on the entire cipher $E$. The DL technique was used to mount the best known attacks against numerous ciphers, including the AES finalist Serpent, ICEPOLE, COCONUT98, Chaskey, CTC2, and 8-round DES.

Several papers aimed at formalizing the DL attack, and formulating assumptions under which its complexity can be estimated accurately. These culminated in a recent work of Blondeau, Leander, and Nyberg (Journal of Cryptology, 2017) which obtained an accurate expression under the sole assumption that the two subciphers $E_0$ and $E_1$ are independent.

In this paper we show that in many cases, dependency between the two subcipher s significantly affects the complexity of the DL attack, and in particular, can be exploited by the adversary to make the attack more efficient. We present the Differential-Linear Connectivity Table (DLCT) which allows us to take into account the dependency between the two subciphers, and to choose the differential characteristic in $E_0$ and the linear approximation in $E_1$ in a way that takes advantage of this dependency. We then show that the DLCT can be constructed efficiently using the Fast Fourier Transform. Finally, we demonstrate the strength of the DLCT by using it to improve differential-linear attacks on ICEPOLE and on 8-round DES, and to explain published experimental results on Serpent and on the CAESAR finalist Ascon which did not comply with the standard differential-linear framework.
Expand
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, Takashi Yamakawa
ePrint Report ePrint Report
In a non-interactive zero-knowledge (NIZK) proof, a prover can non-interactively convince a verifier of a statement without revealing any additional information. Thus far, numerous constructions of NIZKs have been provided in the common reference string (CRS) model (CRS-NIZK) from various assumptions, however, it still remains a long standing open problem to construct them from tools such as pairing-free groups or lattices. Recently, Kim and Wu (CRYPTO'18) made great progress regarding this problem and constructed the first lattice-based NIZK in a relaxed model called NIZKs in the preprocessing model (PP-NIZKs). In this model, there is a trusted statement-independent preprocessing phase where secret information are generated for the prover and verifier. Depending on whether those secret information can be made public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and designated-prover NIZK (DP-NIZK) as special cases. It was left as an open problem by Kim and Wu whether we can construct such NIZKs from weak paring-free group assumptions such as DDH. As a further matter, all constructions of NIZKs from Diffie-Hellman (DH) type assumptions (regardless of whether it is over a paring-free or paring group) require the proof size to have a multiplicative-overhead $|C| \cdot \poly(\secpar)$, where $|C|$ is the size of the circuit that computes the $\NP$ relation.

In this work, we make progress of constructing (DV, DP, PP)-NIZKs with varying flavors from DH-type assumptions. Our results are summarized as follows: \begin{itemize} \item DV-NIZKs for $\NP$ from the CDH assumption over pairing-free groups. This is the first construction of such NIZKs on pairing-free groups and resolves the open problem posed by Kim and Wu (CRYPTO'18). \item DP-NIZKs for $\NP$ with short proof size from a DH-type assumption over pairing groups. Here, the proof size has an additive-overhead $|C|+\poly(\secpar)$ rather then an multiplicative-overhead $|C| \cdot \poly(\secpar)$. This is the first construction of such NIZKs (including CRS-NIZKs) that does not rely on the LWE assumption, fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. \item PP-NIZK for $\NP$ with short proof size from the DDH assumption over pairing-free groups. This is the first PP-NIZK that achieves a short proof size from a weak and static DH-type assumption such as DDH. Similarly to the above DP-NIZK, the proof size is $|C|+\poly(\secpar)$. This too serves as a solution to the open problem posed by Kim and Wu (CRYPTO'18). \end{itemize} Along the way, we construct two new homomorphic authentication (HomAuth) schemes which may be of independent interest.
Expand
◄ Previous Next ►