International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

13 August 2019

Kai Chen; Zhongrui Lin; Jian Wan; Lei Xu; Chungen Xu.
ePrint Report ePrint Report
Searchable symmetric encryption (SSE) for multi-owner model draws much attention as it enables data users to perform searches over encrypted cloud data outsourced by data owners. However, implementing secure and precise query, efficient search and flexible dynamic system maintenance at the same time in SSE remains a challenge. To address this, this paper proposes secure and efficient multi-keyword ranked search over encrypted cloud data for multi-owner model based on searching adversarial networks. We exploit searching adversarial networks to achieve optimal pseudo-keyword padding, and obtain the optimal game equilibrium for query precision and privacy protection strength. Maximum likelihood search balanced tree is generated by probabilistic learning, which achieves efficient search and brings the computational complexity close to $\mathcal{O}(\log N)$. In addition, we enable flexible dynamic system maintenance with balanced index forest that makes full use of distributed computing. Compared with previous works, our solution maintains query precision above 95% while ensuring adequate privacy protection, and introduces low overhead on computation, communication and storage.
Expand
Lynn Margaret Batten, Hugh Cowie Williams
ePrint Report ePrint Report
Abstract. The extremely efficient Rabin-Williams signature scheme relies on decryption of a quadratic equation in order to retrieve the original message. Customarily, square roots are found using the Chinese Remainder Theorem. This can be done in polynomial time, but generally produces four options for the correct message which must be analyzed to determine the correct one. This paper resolves the problem of efficient deterministic decryption to the correct message modulo $p^2q$ by establishing conditions on the primes $p$ and $q$ as well as on any legitimate message. We do this using the CRT modulo pq to find four roots. We show that the correct root (initial message) is the only one of these four which is in our allowed message set (it is in fact the smallest of the four integers) and which satisfies a quadratic equation modulo $p^2q$; no additional work is required to eliminate the others. As a result, we propose what we believe is now the most efficient version of R-W signature scheme decryption.
Expand
Fabio Banfi, Ueli Maurer, Christopher Portmann, Jiamin Zh
ePrint Report ePrint Report
Recent research in quantum cryptography has led to the development of schemes that encrypt and authenticate quantum messages with computational security. The security definitions used so far in the literature are asymptotic, game-based, and not known to be composable. We show how to define finite, composable, computational security for secure quantum message transmission. The new definitions do not involve any games or oracles, they are directly operational: a scheme is secure if it transforms an insecure channel and a shared key into an ideal secure channel from Alice to Bob, i.e., one which only allows Eve to block messages and learn their size, but not change them or read them. By modifying the ideal channel to provide Eve with more or less capabilities, one gets an array of different security notions. By design these transformations are composable, resulting in composable security.

Crucially, the new definitions are finite. Security does not rely on the asymptotic hardness of a computational problem. Instead, one proves a finite reduction: if an adversary can distinguish the constructed (real) channel from the ideal one (for some fixed security parameters), then she can solve a finite instance of some computational problem. Such a finite statement is needed to make security claims about concrete implementations.

We then prove that (slightly modified versions of) protocols proposed in the literature satisfy these composable definitions. And finally, we study the relations between some game-based definitions and our composable ones. In particular, we look at notions of quantum authenticated encryption and QCCA2, and show that they suffer from the same issues as their classical counterparts: they exclude certain protocols which are arguably secure.
Expand
Wen-Ran Zhang
ePrint Report ePrint Report
Whereas it is widely deemed impossible to overcome the optimality of the one-time pad (OTP) cipher in pre- and post-quantum cryptography, this work shows that the optimality of information theoretic security of OTP is paradoxical from the perspective of information conservational computing and cryptography. To prove this point, information theoretic security of OTP is extended to information conservational security of scalable one-time pad (S-OTP) where total key length can be compressed to a condensed tiny minimum through “black hole” keypad compression coupled with “big bang” data recovery. Thus, S-OTP makes it possible for secure transmission of long messages that used to be impossible with OTP. It is proven that if the security of OTP is optimal, S-OTP would be impossible; on the other hand, if S-OTP is not information theoretically secure, OTP would not be secure either. Thus, we have a proof by contradiction on the paradoxical nature of OTP optimality. It is further proven that a summation with percentage distribution is a special case of equilibrium-based bipolar quantum cellular automata. This proof bridges a classical world with a quantum world and makes it possible to combine the advantages of both approaches for pre- and post-quantum cryptography. It is suggested that the findings of this work form an analytical paradigm of quantum intelligence machinery toward perfect information conservational security. Some mysteries in nature and science are identified and discussed. In particular, the question is posted: Could modern science have been like a well-founded building with a floor of observable being and truth but missing its roof for equilibrium, harmony, information conservation, and logically definable causality?
Expand
David Derler, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks
ePrint Report ePrint Report
Managing sensitive data in highly-distributed environments is gaining a lot of attention recently. Often, once data is presented to such environments, this data is persistent there. Being able to "forget" in such environments constitutes a very desired feature due to data security and privacy issues. In particular, applying the European General Data Protection Regulation (GDPR), the "Right to be Forgotten" essentially became a data owner right.

In this work, we seek for cryptographic solutions that offer the possibility to willfully lose access to data in distributed environments (which can be seen equivalent to removing that data). We argue that simple encryption mechanisms do not suffice to cover all desired requirements and provide a solution that offers several strong security and privacy features. In particular, our solution achieves forward secrecy for all participants in the system (i.e., even when user keys leak), ensures strong privacy against public observers of the system (i.e., key anonymity against tracking), and enables fine-grained access control. Having those features in parallel was unknown from the cryptographic literature.

We base our solution on a novel cryptographic primitive we dub Identity-Based Puncturable Encryption (IBPE) which significantly enhances previous ideas on Puncturable Encryption (PE) due to Green and Miers (IEEE S&P 2015) and Günther et al. (EUROCRYPT 2017). We argue that black-box constructions from Hierarchical Identity-Based Encryption (HIBE) do not seem to work, albeit we do know how to construct PE from HIBE. We further introduce an important feature being crucial in the setting of always-accessible and public data, namely that of key-anonymity for IBPE such that an IBPE ciphertext reveals nothing about the encryption key. We demonstrate the feasibility of our IBPE construction with a practical prototype implementation. Finally, we show that IBPE is a very versatile tool by using it to generically instantiate forward-secret IBE and forward-secret digital signatures, latter also being of importance in a distributed setting.
Expand

12 August 2019

Gildas Avoine, Sébastien Canard, Loïc Ferreira
ePrint Report ePrint Report
With the rise of the Internet of Things and the growing popularity of constrained end-devices, several security protocols are widely deployed or strongly promoted (e.g., Sigfox, LoRaWAN, NB-IoT). Based on symmetric-key functions, these protocols lack in providing security properties usually ensured by asymmetric schemes, in particular forward secrecy. We describe a 3-party authenticated key exchange protocol solely based on symmetric-key functions (regarding the computations done between the end-device and the back-end network) which guarantees forward secrecy. Our protocol enables session resumption (without impairing security). This allows saving communication and computation cost, and is particularly advantageous for low-resource end-devices. Our 3-party protocol can be applied in a real-case IoT deployment (i.e., involving numerous end-devices and servers) such that the latter inherits from the security properties of the protocol. We give a concrete instantiation of our key exchange protocol, and formally prove its security.
Expand

11 August 2019

Zurich, Switzerland, 23 November - 24 November 2019
Event Calendar Event Calendar
Event date: 23 November to 24 November 2019
Submission deadline: 3 August 2019
Notification: 18 September 2019
Expand

08 August 2019

Tobias Schneider, Clara Paglialonga, Tobias Oder, Tim Güneysu
ePrint Report ePrint Report
With the rising popularity of lattice-based cryptography, the Learning with Errors (LWE) problem has emerged as a fundamental core of numerous encryption and key exchange schemes. Many LWE-based schemes have in common that they require sampling from a discrete Gaussian distribution which comes with a number of challenges for the practical instantiation of those schemes. One of these is the inclusion of countermeasures against a physical side-channel adversary. While several works discuss the protection of samplers against timing leaks, only few publications explore resistance against other side-channels, e.g., power. The most recent example of a protected binomial sampler (as used in key encapsulation mechanisms to sufficiently approximate Gaussian distributions) from CHES 2018 is restricted to a first-order adversary and cannot be easily extended to higher protection orders. In this work, we present the first protected binomial sampler which provides provable security against a side-channel adversary at arbitrary orders. Our construction relies on a new conversion between Boolean and arithmetic (B2A) masking schemes for prime moduli which outperforms previous algorithms significantly for the relevant parameters, and is paired with a new masked bitsliced sampler allowing secure and efficient sampling even at larger protection orders. Since our proposed solution supports arbitrary moduli, it can be utilized in a large variety of lattice-based constructions, like NewHope, LIMA, Saber, Kyber, HILA5, or Ding Key Exchange.
Expand
Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit
ePrint Report ePrint Report
In this paper, we present a practicable chosen ciphertext timing attack retrieving the secret key of HQC. The attack exploits a correlation between the weight of the error to be decoded and the running time of the decoding algorithm of BCH codes. For the 128-bit security parameters of HQC, the attack runs in less than a minute on a desktop computer using 5441 decoding requests and has a success probability of approximately 93 percent. To prevent this attack, we propose a constant time algorithm for the decoding of BCH codes. Our implementation of the countermeasure achieves a constant time execution of the decoding process without a significant performance penalty.
Expand
Benoît Libert, Khoa Nguyen, Alain Passelègue, Radu Titiu
ePrint Report ePrint Report
The Naor-Yung paradigm is a well-known technique that constructs IND-CCA2-secure encryption schemes by means of non-interactive zero-knowledge proofs satisfying a notion of simulation-soundness. Until recently, it was an open problem to instantiate it under the sole Learning-With-Errors (LWE) assumption without relying on random oracles. While the recent results of Canetti et al. (STOC'19) and Peikert-Shiehian (Crypto'19) provide a solution to this problem by applying the Fiat-Shamir transform in the standard model, the resulting constructions are extremely inefficient as they proceed via a reduction to an NP-complete problem. In this paper, we give a direct, non-generic method for instantiating Naor-Yung under the LWE assumption outside the random oracle model. Specifically, we give a direct construction of an unbounded simulation-sound NIZK proof system for the LWE relation. In turn, this relation makes it possible to express the equality of plaintexts encrypted under different keys in the dual Regev cryptosystem. As an application, we obtain an LWE-based public-key encryption scheme for which we can prove key-dependent message (KDM-CCA2) security under chosen-ciphertext attacks in the standard model.
Expand
Raghvendra Rohit, Guang Gong
ePrint Report ePrint Report
In this paper, we investigate the security of Limdolen and HERN which are Round 1 submissions of the ongoing NIST Lightweight Cryptography Standardization Project. We show that some non-conservative design choices made by the designers solely to achieve a lightweight design lead to practical forgery attacks. In particular, we create associated data-only, ciphertext-only and associated data and ciphertext forgeries which require a feasible number of forging attempts.

Limdolen employs a tweaked PMAC based construction to offer authenticated encryption functionality. It has two variants, Limdolen-128 and Limdolen-256 with key sizes 128 and 256 bits, respectively. The designers claim 128(256)-bit integrity security for Limdolen-128(256). Our main observation is that it uses a sequence of period 2 consisting of only two distinct secret masks. This structural flaw attributes to a successful forgery (all three types) with probability 1 after observing the output of a single encryption query. While, HERN is a 128-bit authenticated encryption scheme whose high level design is inspired from the CAESAR finalist Acorn. We show a message modification strategy by appending/removing a sequence of consecutive ‘0’ bits. Accordingly, we can construct associated data-only, ciphertext-only and associated data and ciphertext forgery with the success rate of $2^{-1}$, $2^{-1}$ and 1 after 2, 4 and 2 encryption queries, respectively.

Overall, our attacks defeat the claim of 128(256) and 128-bit integrity security of Limdolen-128(256) and HERN, respectively. We have experimentally verified the correctness of our attacks with the reference implementations. Notably, these are the first cryptanalytic results on both algorithms. Consequently, our results are expected to help in further understanding of similar designs.
Expand
Rafael J. Cruz, Antonio Guimarães, Diego F. Aranha
ePrint Report ePrint Report
In this paper, the efficient software implementation and side-channel resistance of the LS-Design construction is studied through a series of software implementations of the Fantomas block cipher, one of its most prominent instantiations. Target platforms include resource-constrained ARM devices like the Cortex-M3 and M4, and more powerful processors such as the ARM Cortex-A15 and modern Intel platforms. The implementations span a broad range of characteristics: 32-bit and 64-bit versions, unprotected and side-channel resistant, and vectorized code for NEON and SSE instruction sets. Our results improve the state of the art substantially, both in terms of efficiency and compactness, by making use of novel algorithmic techniques and features specific to the target platform. We finish by proposing and prototyping instruction set extensions to reduce by half the performance penalty of the introduced side-channel countermeasures.
Expand
Paul Burciu, Emil Simion
ePrint Report ePrint Report
This paper is focused on an open question regarding the correlation and the power of NIST statistical test suite. If we found some correlation between these statistical tests, then we can improve the testing strategy by executing only one of the tests that are correlated. Using the Galton Pearson “product-moment correlation coefficient”, by simulation, we found a high correlation between five couples of these statistical tests. Also we make a conjecture about the power of NIST statistical tests suite in the case that these tests are independent.
Expand
Gwangbae Choi, Serge Vaudenay
ePrint Report ePrint Report
Timed-release encryption allows senders to send a message to a receiver which cannot decrypt until a server releases a time bound key at the release time. The release time usually supposed to be known to the receiver, the ciphertext therefore cannot be decrypted if the release time is lost. We solve this problem in this paper by having a master time bound key which can replace the time bound key of any release time. We first present security models of the timed-release encryption with master time bound key. We present a provably secure construction based on the Weil pairing.
Expand
Igor Semaev, Andrea Tenti
ePrint Report ePrint Report
Gröbner basis methods are used to solve systems of polynomial equations over finite fields, but their complexity is poorly understood. In this work an upper bound on the time complexity of constructing a Gröbner basis and finding a solutions of a system is proved. A key parameter in this estimate is the degree of regularity of the leading forms of the polynomials. Therefore, we provide an upper bound on the degree of regularity for a sufficiently overdetermined system of forms over any finite field. The bound holds with probability tending to 1 and depends only on the number of variables, the number of polynomials, and their degrees. Our results imply that sufficiently overdetermined systems of polynomial equations are solvable in polynomial time with high probability.
Expand
Gérald Gavin, Stéphane Bonnevay
ePrint Report ePrint Report
Many cryptographic constructions are based on the famous problem LWE \cite{LWERegev05}. In particular, this cryptographic problem is currently the most relevant to build FHE. In some LWE-based schemes, encrypting $x$ consists of randomly choosing a vector $c$ satisfying $\langle s,c\rangle=x+\textsf{noise}\pmod q$ where $s$ is a secret size-$n$ vector. While the vector sum is a homomorphic operator, such a scheme is intrinsically vulnerable to lattice-based attacks. To overcome this, we propose to define $c$ as a pair of vectors $(u,v)$ satisfying $\langle s,u\rangle/\langle s,v\rangle=x+\textsf{noise}\pmod q$. This simple scheme is based on a new cryptographic problem intuitively not easier than LWE, called Fractional LWE (FLWE). While some homomorphic properties are lost, the secret vector $s$ could be hopefully chosen shorter leading to more efficient constructions. We extensively study the hardness of FLWE. We first prove that the decision and search versions are equivalent provided $q$ is a \textit{small} prime. We then propose lattice-based cryptanalysis showing that $n$ could be chosen logarithmic in $\log q$.
Expand
Thomas Haines, Clementine Gritti
ePrint Report ePrint Report
Verifiable electronic voting promises to ensure the correctness of elections even in the presence of a corrupt authority, while providing strong privacy guarantees. However, few practical systems with end-to-end verifiability are expected to offer long term privacy, let alone guarantee it. Since good guarantees of privacy are essential to the democratic process, good guarantees of everlasting privacy must be a major goal of secure online voting systems. Various currently proposed solutions rely on unusual constructions whose security has not been established. Further, the cost of verifying the zero knowledge proofs of other solutions has only been partially analysed. Our work builds upon Moran and Naor's solution---and its extensions, applications and generalisations---to present a scheme which is additively homomorphic, efficient to verify, and rests upon well studied assumptions.
Expand
Kai Chen; Zhongrui Lin; Jian Wan; Lei Xu; Chungen Xu.
ePrint Report ePrint Report
With the rapid development of cloud computing, searchable encryption for multiple data owners model (multi-owner model) draws much attention as it enables data users to perform searches on encrypted cloud data outsourced by multiple data owners. However, there are still some issues yet to be solved nowadays, such as precise query, fast query, dimension disaster and flexible system dynamic maintenance. To target these issues, this paper proposes a secure and efficient multi-keyword ranked search over encrypted cloud data for multi-owner model based on searching adversarial networks (MRSM\_SAN). Specifically, we exploit searching adversarial networks to achieve optimal pseudo-keyword filling, and obtains the optimal game equilibrium for query precision and privacy protection strength. In order to achieve fast query, maximum likelihood search balanced tree is proposed, which brings the query complexity closer to $O(\log N)$. we reduce data dimension with fast index clustering, and enable low-overhead system maintenance based on balanced index forest. In addition, attribute based encryption is used to achieve more secure and convenient key management as well as authorized access control. Compared with previous work, our solution maintains query precision above 95\% while ensuring adequate privacy protection, significantly improving search efficiency, enabling more flexible system dynamic maintenance, and reducing the overhead on computation and storage.
Expand
Michael Yonli
ePrint Report ePrint Report
Side channel attacks have demonstrated in the past that it is possible to break cryptographic algorithms by attacking the implementation rather than the algorithm. This paper compares an adaptation of Paul Kocher's Differential Power Analysis (DPA) for AES with a multi-bit variant by attacking an AES128 implementation for an ATmega328P microcontroller board. The results show that the use of multi-bit DPA can significantly reduce ghost peaks and allow for the recovery of a key with far fewer traces.
Expand

06 August 2019

Mehdi Tibouchi, Alexandre Wallet
ePrint Report ePrint Report
As one of the most efficient lattice-based signature schemes, and one of the only ones to have seen deployment beyond an academic setting (e.g., as part of the VPN software suite strongSwan), BLISS has attracted a significant amount of attention in terms of its implementation security, and side-channel vulnerabilities of several parts of its signing algorithm have been identified in previous works. In this paper, we present an even simpler timing attack against it. The bimodal Gaussian distribution that BLISS is named after is achieved using a random sign flip during signature generation, and neither the original implementation of BLISS nor strongSwan ensure that this sign flip is carried out in constant time. It is therefore possible to recover the corresponding sign through side-channel leakage (using, e.g., cache attacks or branch tracing). We show that obtaining this single bit of leakage (for a moderate number of signatures) is in fact sufficient for a full key recovery attack. The recovery is carried out using a maximum likelihood estimation on the space of parameters, which can be seen as a statistical manifold. The analysis of the attack thus reduces to the computation of the Fisher information metric.
Expand
◄ Previous Next ►