International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

13 December 2020

Marco Holz, Benjamin Judkewitz, Helen Möllering, Benny Pinkas, Thomas Schneider
ePrint Report ePrint Report
Modeling the spread of COVID-19 is crucial for any effort to manage the pandemic. However, detailed epidemiological simulations suffer from a scarcity of relevant empirical data, such as social contact graphs, because such data is inherently privacy-critical. Thus, there is an urgent need for a method to perform powerful epidemiological simulations on real-world contact graphs without disclosing privacy-critical information. In this work, we propose a practical framework for privacy-preserving epidemiological modeling (PEM) on contact information stored on mobile phones, like the ones collected by already deployed contact tracing apps. Unlike those apps, PEM allows for meaningful epidemiological simulations. This is enabled by a novel Threshold-PIR-SUM protocol to privately retrieve the sum of a fixed number of distinct values without revealing individual values. PEM protects the privacy of the users by not revealing sensitive data to the system operator or other participants, while enabling detailed predictive models of pandemic spread.
Expand
Howard M. Heys
ePrint Report ePrint Report
In this article, we discuss basic strategies that can be used to implement block ciphers in both software and hardware environments. As models for discussion, we use substitution-permutation networks which form the basis for many practical block cipher structures. For software implementation, we discuss approaches such as table lookups and bit-slicing, while for hardware implementation, we examine a broad range of architectures from high speed structures like pipelining, to compact structures based on serialization. To illustrate different implementation concepts, we present example data associated with specific methods and discuss sample designs that can be employed to realize different implementation strategies. We expect that the article will be of particular interest to researchers, scientists, and engineers that are new to the field of cryptographic implementation.
Expand
Rachit Rawat, Mahabir Prasad Jhanwar
ePrint Report ePrint Report
A single-sign-on (SSO) is an authentication system that allows a user to log in with a single identity and password to any of several related, yet independent, server applications. SSO solutions eliminate the need for users to repeatedly prove their identities to different applications and hold different credentials for each application. Token-based authentication is commonly used to enable an SSO experience on the web, and on enterprise networks. A large body of work considers distributed token generation which can protect the long-term keys against a subset of breached servers. A recent work (CCS'18) introduced the notion of Password-based Threshold Authentication (PbTA) with the goal of making password-based token generation for SSO secure against server breaches that could compromise both long-term keys and user credentials. They also introduced a generic framework called PASTA that can instantiate a PbTA system.

The existing SSO systems built on distributed token generation techniques, including the PASTA framework, do not admit password-update functionality. In this work, we address this issue by proposing a password-update functionality into the PASTA framework. We call the modified framework PAS-TA-U.

As a concrete application, we instantiate PAS-TA-U to implement in Python a distributed SSH key manager for enterprise networks (ESKM) that also admits a password-update functionality for its clients. Our experiments show that the overhead of protecting secrets and credentials against breaches in our system compared to a traditional single server setup is low (average 119 ms in a 10-out-of-10 server setting on Internet with 80 ms round trip latency).
Expand
Deepraj Pandey, Nandini Agrawal, Mahabir Prasad Jhanwar
ePrint Report ePrint Report
Contact tracing is an important mitigation tool for national health services to fight epidemics such as COVID-19. While many of the existing approaches for automated contact tracing focus on privacy-preserving decentralized solutions, the use of blockchain in these applications is often suggested for the transparency and immutability of the data being collected.

We present CovidBloc, a contact tracing system that implements the COVID 19 exposure database on Hyperledger Fabric Blockchain Network. Like most decentralized contact tracing application, the participants of the CovidBloc are: (1) a mobile application running on a bluetooth-equipped smartphone, (2) a web dashboard for health officials, and (3) a backend server acting as a repository for data being collected. We have implemented all components of CovidBloc to make it a fully functional contact tracing application. It is hosted at https://anonymous.4open.science/r/c6caad6d-62a4-463c-8301-472e421b931f/.

The mobile application for CovidBloc is developed for Android. The exposure notification system in our mobile application is implemented as per the recently released draft documentation by Google and Apple. The exposure notification API from Google and Apple is only available to a limited number of teams per country.

The backend server is an important component of any automated contact tracing system which acts as a repository for exposure data to be pushed by smartphones upon authorization by the health staff. Since adding or removing information on the server has privacy consequences, it is required that the server should not be trusted. The backend server for CovidBloc is implemented on Hyperledger Fabric Blockchain network.
Expand
Anubhab Baksi, Shivam Bhasin, Jakub Breier, Anupam Chattopadhyay, Vinay B. Y. Kumar
ePrint Report ePrint Report
In the current world of the Internet-of-things and edge computing, computations are increasingly performed locally on small connected systems. As such, those devices are often vulnerable to adversarial physical access, enabling a plethora of physical attacks which is a challenge even if such devices are built for security.

As cryptography is one of the cornerstones of secure communication among devices, the pertinence of fault attacks is becoming increasingly apparent in a setting where a device can be easily accessed in a physical manner. In particular, two recently proposed fault attacks, Statistical Ineffective Fault Attack (SIFA) and the Fault Template Attack (FTA) are shown to be formidable due to their capability to bypass the common duplication based countermeasures. Duplication based countermeasures, deployed to counter the Differential Fault Attack (DFA), work by duplicating the execution of the cipher followed by a comparison to sense the presence of any effective fault, followed by an appropriate recovery procedure. While a handful of countermeasures are proposed against SIFA, no such countermeasure is known to thwart FTA to date.

In this work, we propose a novel countermeasure based on duplication, which can protect against both SIFA and FTA. The proposal is also lightweight with only a marginally additional cost over simple duplication based countermeasures. Our countermeasure further protects against all known variants of DFA, including Selmke, Heyszl, Sigl’s attack from FDTC 2016. It does not inherently leak side-channel information and is easily adaptable for any symmetric key primitive. The validation of our countermeasure has been done through gate-level fault simulation.
Expand
Ziyuan Liang, Weiran Liu, Fan Zhang, Bingsheng Zhang, Jian Liu, Lei Zhang, Kui Ren
ePrint Report ePrint Report
Private Set Intersection (PSI) is a specified protocol of secure Multi-Party Computation (MPC). PSI allows two parties to obtain the intersection of their private sets while nothing else is revealed. In contrast to the great demand for PSI in real-world applications, there is still no evaluation results of different general practical PSI framework. Most existing PSI implmentations are based on C/C++, which also makes them hard to compute in parallel. %We focus on OT-based PSI in this work. Oblivious transfer (OT) allows a party to obliviously choose messages from others. Lots of PSI protocols have been proposed in recent years, which achieve good performance and are regarded as one of the most potential PSI species. In this paper, we propose a generic Java-based PSI framework and implement all up-to-date OT-based PSI protocols within the framework until now. We evaluate these OT-based PSI protocols and the dependent cryptographic primitives and provide the best combination of primitives for constructing a best-performed OT-based PSI from the ground up. Additional optimizations are also applied to the protocols in our framework, including both generic and custom-tailored ones. We adopt filters to significantly reduce the communication of OT-based PSI protocols. The implementations in our framework support concurrence by using the natural feature of Java, which avoids to manurally allocate threads when using C/C++. We believe that our framework benefits a lot for future MPC and PSI researches and helps the promotion of PSI-based applications.
Expand
Martin R. Albrecht, Nadia Heninger
ePrint Report ePrint Report
Lattice-based algorithms in cryptanalysis often search for a target vector satisfying integer linear constraints as a shortest or closest vector in some lattice. In this work, we observe that these formulations may discard non-linear information from the underlying application that can be used to distinguish the target vector even when it is far from being uniquely close or short.

We formalize lattice problems augmented with a predicate distinguishing a target vector and give algorithms for solving instances of these problems. We apply our techniques to lattice-based approaches for solving the Hidden Number Problem, a popular technique for recovering secret DSA or ECDSA keys in side-channel attacks, and demonstrate that our algorithms succeed in recovering the signing key for instances that were previously believed to be unsolvable using lattice approaches. We carried out extensive experiments using our estimation and solving framework, which we also make available with this work.
Expand
Marc Fischlin, Felix Günther, Philipp Muth
ePrint Report ePrint Report
We discuss the setting of information-theoretically secure channel protocols where confidentiality of transmitted data should hold against unbounded adversaries. We argue that there are two possible scenarios: One is that the adversary is currently bounded, but stores today's communication and tries to break confidentiality later when obtaining more computational power or time. We call channel protocols protecting against such attacks future-secure. The other scenario is that the adversary already has extremely strong computational powers and may try to use that power to break current executions. We call channels withstanding such stronger attacks unconditionally-secure.

We discuss how to instantiate both future-secure and unconditionally-secure channels. To this end we first establish according confidentiality and integrity notions, then prove the well-known composition theorem to also hold in the information-theoretic setting: Chosen-plaintext security of the channel protocol, together with ciphertext integrity, implies the stronger chosen-ciphertext notion. We discuss how to build future-secure channel protocols by combining computational message authentication schemes like HMAC with one-time pad encryption. Chosen-ciphertext security follows easily from the generalized composition theorem. We also show that using one-time pad encryption with the unconditionally-secure Carter-Wegman MACs we obtain an unconditionally-secure channel protocol.
Expand
Timothy J. Hodges, Sergio Molina
ePrint Report ePrint Report
Semi-regular sequences over $\mathbb{F}_2$ are sequences of homogeneous elements of the algebra $ B^{(n)}=\mathbb{F}_2[X_1,...,X_n]/(X_1^2,...,X_n^2)$, which have as few relations between them as possible. It is believed that most such systems are semi-regular and this property has important consequences for understanding the complexity of Grobner basis algorithms such as F4 and F5 for solving such systems. In fact even in one of the simplest and most important cases, that of quadratic sequences of length $n$ in $n$ variables, the question of the existence of semi-regular sequences for all $n$ remains open. In this paper we present a new framework for the concept of semiregularity which we hope will allow the use of ideas and machinery from homological algebra to be applied to this interesting and important open question. First we introduce an analog of the Koszul complex and show that $\mathbb{F}_2$-semi-regularity can be characterized by the exactness of this complex. We show how the well known formula for the Hilbert series of a semiregular sequence can be deduced from the Koszul complex. Finally we show that the concept of first fall degree also has a natural description in terms of the Koszul complex.
Expand
Nizamud Din, Abdul Waheed, Nasir Saeed
ePrint Report ePrint Report
Aggregate signcryption combines the functionalities of aggregate signature and encryption. Very recently, Zia & Ali [1] (Wireless Personal Communications, https://doi.org/10.1007/s11277-020-07637-z) proposed an elliptic curve cryptography (ECC) based multi-recipient aggregate signcryption scheme. The authors claimed that their scheme is correct, efficient, and secure against known attacks. However, by this comment, we show that their scheme is incorrect and the receiver(s) is unable to unsigncrypt the message.
Expand
Dan Boneh, Justin Drake, Ben Fisch, Ariel Gabizon
ePrint Report ePrint Report
A polynomial commitment scheme (PCS) provides the ability to commit to a polynomial over a finite field and prove its evaluation at points. A succinct PCS has commitment and evaluation proof size sublinear in the degree of the polynomial. An efficient PCS has sublinear proof verification. Recently, it has been shown that any efficient and succinct PCS can be used to construct a SNARK with similar security and efficiency characteristics. We define an additive PCS to capture a ``homomorphic" property of commitments over a computational group $\mathbb{G}$ of bounded size. All existing examples of additive schemes (e.g., Bulletproofs, KZG, DARK, Dory) are also what we call $m$-spanning, meaning that commitments to the monomials of degree less than $m$ generate $\mathbb{G}$. Our first technical result is a black-box transformation of any $m$-spanning additive PCS into a hiding PCS with a zero-knowledge evaluation proof. Our second technical result is that every additive succinct PCS supports efficient proof aggregation.

PCS proof aggregation reduces the task of proving evaluations of multiple commitments at multiple independent points to the task of proving the evaluation of a single ``aggregate" commitment at a single point. We present two flavors of aggregation: private and public. In private aggregation the prover has a private witness consisting of openings of the input commitments. In public aggregation, the prover/verifier share the same inputs, which includes non-interactive evaluation proofs for each input commitment. Our public aggregation protocol applies to any additive succinct PCS. Our private aggregation protocol applies more broadly to any succinct PCS that supports an efficient $\textit{linear combination scheme}$: a protocol for verifiably aggregating commitments into a new commitment to their linear combination. This includes non-additive schemes such as the post-quantum FRI-based PCS.

We apply these results to the Halo proof carrying data (PCD) system. Halo was originally built using the Bulletproofs inner-product argument as the underlying PCS, and was recently generalized to work with the KZG PCS. We show that Halo can be instantiated with any PCS that supports efficient PCS aggregation, private or public. Thus, our results show that efficient (zero-knowledge) SNARKs and PCD can be constructed from any succinct PCS that has an efficient linear combination scheme, even if the PCS itself is inefficient. These results yield new Halo-like PCD systems from PCS constructions beyond Bulletproofs and KZG, including DARK, FRI, and Dory. The post-quantum Halo instantiation from FRI is particularly surprising as FRI is not additive.
Expand
Anna M. Johnston
ePrint Report ePrint Report
Prime integers are the backbone of most public key cryptosystems. Attacks often go after the primes themselves, as in the case of all factoring and index calculus algorithms. Primes are time sensitive cryptographic material and should be periodically changed. Unfortunately many systems use fixed primes for a variety of reasons, including the difficulty of generating trusted, random, cryptographically secure primes. This is particularly concerning in the case of discrete log based cryptosystems. This paper describes a variant of provable prime generation, intended for discrete logarithm based cryptography, based off Pocklington's theorem with improved efficiency, flexibility and security.
Expand
SeongHyuck Lim, JongHyeok Lee, Dong-Guk Han
ePrint Report ePrint Report
Recently, as the number of IoT (Internet of Things) devices has increased, the use of lightweight cryptographic algorithms that are suitable for environments with scarce resources has also increased. Consequently, the safety of such cryptographic algorithms is becoming increasingly important. Among them, side-channel analysis methods are very realistic threats. In this paper, we propose a novel differential fault attack method on the Lightweight Encryption Algorithm (LEA) cipher which became the ISO/IEC international standard lightweight cryptographic algorithm in 2019. Previously proposed differential fault attack methods on the LEA used the Single Bit Flip model, making it difficult to apply to real devices. The proposed attack method uses a more realistic attacker assumption, the Random Word Error model. We demonstrate that the proposed attack method can be implemented on real devices using an electromagnetic fault injection setup. Our attack method has the weakest attacker assumption among attack methods proposed to date. In addition, the number of required fault-injected ciphertexts and the number of key candidates for which exhaustive search is performed are the least among all existing methods. Therefore, when implementing the LEA cipher on IoT deivces, designers must apply appropriate countermeasures against fault injection attacks.
Expand

11 December 2020

10 December - 15 June 2021
Event Calendar Event Calendar
Event date: 10 December to 15 June 2021
Submission deadline: 15 June 2021
Expand
Lieusaint, France, 6 July - 8 July 2021
Event Calendar Event Calendar
Event date: 6 July to 8 July 2021
Submission deadline: 16 February 2021
Notification: 15 April 2021
Expand
Hong Kong, Hong Kong, 7 July -
Event Calendar Event Calendar
Event date: 7 July to
Expand
The Centre for Doctoral Training in Cyber Security for the Everyday. Royal Holloway University,Egham
Job Posting Job Posting
Project Title: Social and Societal Foundations of Cryptography: The Case of Large-Scale Protests. The Centre for Doctoral Training in Cyber Security for the Everyday at Royal Holloway seeks to recruit PhD students who will explore the social and societal foundations of cryptography. Cryptography is a field that actively interrogates its foundations. These foundations are, unsurprisingly and sensibly, understood to be of the complexity-theoretic and mathematical variety. However, cryptographic security notions -- and everything that depends on them -- do not exist in a vacuum, they have reasons to be. While the immediate objects of cryptography are not social relations, it presumes and models them. This fact is readily acknowledged in the introductions of cryptographic papers which illustrate the utility of the work by reference to some social situation where several parties have conflicting ends but a need or desire to interact. Yet, this part of the definitional work has not received the same rigour from the cryptographic community as complexity-theoretic and mathematical questions. This project aims to take first steps towards remedying this situation by grounding cryptographic security notions in findings emerging from ethnographic fieldwork in adversarial situations. In particular, it considers protesters in large-scale protests and aims to understand their security needs, practices and the technologies they rely upon. The project then also analyses these technologies, i.e. attempts to break their security, and proposes new solutions based on the findings from fieldwork. By bringing cryptographic security notions to *the field*, the project provokes a series of security questions about, for example, confidentiality and anonymity in online and offline networks, trust relations and how to establish them, onboarding and authentication practices. We seek applicants with either a background in mathematics and/or computer science or related disciplines or a background in ethnography or experience using related qualitative social science methods

Closing date for applications:

Contact: The studentship includes * Tuition fees: * Maintenance: £21,285 for each academic year. The CDT in Cyber Security for the Everyday can offer up to ten studentships per year, three of which can be awarded to international students (which includes EU and EEA.) contact Prof Martin Albrecht

Expand
Technische Universität Berlin, Faculty IV, Electrical Engineering and Computer Science, Germany
Job Posting Job Posting
TU Berlin, Faculty IV (Electrical Engineering and Computer Science), Institute for Software Engineering and Theoretical Computer Science and the Berlin Institute for Foundations of Learning and Data (BIFOLD) invites applications for the position of a University Professorship - salary grade W3 in the field of "Machine Learning and IT Security". Faculty IV Reference number: IV-756/20 (starting at the earliest possible / unlimited / closing date for applications 04/01/21) Working field: We are seeking qualified applicants who based on previous work will conduct independent research and teaching in two or more of the following areas: (i) Machine Learning for IT-Security (ii) for IT-Security for Machine Learning (iii) Scalable IT-Security (iv) Security fo Data Science Systems and Platforms. Requirements: Applicants must fulfill the appointment requirements according to §100 BerlHG. The prerequisites are a completed scientific university degree with a focus on computer science, the special qualification for scientific work (usually proven by a doctorate) in the field of machine learning/IT security, additional scientific achievements (habilitation or equivalent scientific achievements) as well as pedagogical aptitude and experience, to be given proof of by a teaching portfolio (for more information see TUB website, quick access no. 144242). Research experience in the areas outlined in the job description, experience in national and international research cooperations (proven by relevant stays abroad and/or significant participation in projects) are also required. Teaching will be conducted in both German and English. For the complete job posting, please follow the link https://stellenticket.de/86502/TUB/?lang=en.

Closing date for applications:

Contact: Ms. Anita Hummel

More information: https://stellenticket.de/86502/TUB/?lang=en

Expand
Axelar
Job Posting Job Posting

Axelar is building a decentralized network that connects dApp builders with blockchain ecosystems, applications and users for frictionless cross-chain communication. Our team consists of experienced engineers and researchers in distributed systems, cryptography, and consensus. We’re growing our team and looking for engineers who’re interested in building the new financial stack from the ground up.

  • Understanding of public and secret key: encryption, signatures (Ed25519, ECDSA, etc.).
  • Knowledge of networking technologies, specifically TCP/IP, RPC and the related protocols.
  • Knowledge of operating systems, file systems, and memory on macOS and Linux.
  • Experience with engineering security practices.
  • Ability to find, exploit and fix bugs, security vulnerabilities in software.
  • General knowledge of blockchain technologies.
  • Experience with Go and/or Rust.
  • Bonus: understanding of elliptic curve cryptography, multi-party computation and threshold schemes.
More info at: https://axelar.network

Closing date for applications:

Contact: Sergey Gorbunov: sergey [at] axelar [dot] network

More information: https://axelar.network

Expand

08 December 2020

Arizona State University - Tempe Campus
Job Posting Job Posting
The Ira A. Fulton Schools of Engineering at Arizona State University (ASU) seek applicants for a tenure-track/tenured faculty position in the intersection of Distributed Systems / Blockchain / Security in the School of Computing, Informatics, and Decision Systems Engineering (CIDSE). Areas of interest include, but are not limited to: the robustness, security, and resilience of distributed systems; secure distributed consensus algorithms; internet-scale distributed security; distributed cybersecurity approaches; theory and applications of blockchains and cryptography; secure distributed learning; game-theoretic approaches to cybersecurity; secure multiparty computation, data management, and cryptography; the distributed Internet of Things; and other emerging areas covering various intersections of distributed systems, blockchain, and cybersecurity. Application deadline is January 15, 2021.

More details at https://apply.interfolio.com/81408. For further information or questions about this position please contact Professor Yan Shoshitaishvili at (yans@asu.edu)

Closing date for applications:

Contact: Yan Shoshitaishvili (yans@asu.edu); Ni Trieu (nitrieu@asu.edu)

More information: https://apply.interfolio.com/81408

Expand
◄ Previous Next ►