International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

29 June 2021

Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, François-Xavier Standaert
ePrint Report ePrint Report
Proving the security of masked implementations in theoretical models that are relevant to practice and match the best known attacks of the side-channel literature is a notoriously hard problem. The random probing model is a good candidate to contribute to this challenge, due to its ability to capture the continuous nature of physical leakage (contrary to the threshold probing model), while also being convenient to manipulate in proofs and to automate with verification tools. Yet, despite recent progresses in the design of masked circuits with good asymptotic security guarantees in this model, existing results still fall short when it comes to analyze the security of concretely useful circuits under realistic noise levels and with low number of shares. In this paper, we contribute to this issue by introducing a new composability notion, the Probe Distribution Table (PDT), and a new tool (called STRAPS, for the Sampled Testing of the RAndom Probing Security). Their combination allows us to significantly improve the tightness of existing analyses in the most practical (low noise, low number of shares) region of the design space. We illustrate these improvements by quantifying the random probing security of an AES S-box circuit, masked with the popular multiplication gadget of Ishai, Sahai and Wagner from Crypto 2003, with up to six shares.
Expand
Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis
ePrint Report ePrint Report
Structured encryption (STE) is a form of database encryption that enables searching directly over symmetrically encrypted "structured databases". STE is known to be vulnerable to leakage-abuse attacks that allow data/query reconstruction given only some auxiliary information about the original database. Many existing countermeasures against leakage-abuse attacks perturb the leakage from STE schemes so as to render the attacks infeasible in practice.

We present the first leakage-abuse attacks that achieve practically efficient and highly scalable query reconstruction against state-of-the-art STE schemes with perturbed leakage profiles while relying only no noisy co-occurrence pattern leakage and without making strong assumptions on the auxiliary information available to the adversary. Our attacks subvert the query privacy guarantees of STE schemes with differentially private access patterns (Chen et al., INFOCOM'18) and STE schemes built in a naturally efficient manner from volume-hiding encrypted multi-maps (Kamara and Moataz, Eurocrypt'19 and Patel et al., CCS'19).

Many existing leakage-abuse attacks only work in a strong known-data model where the auxiliary information available to the adversary is either an exact replica of or a "noise-free" subset of the target database. Our attacks are the first to work in a weaker and more realistic inference model where the auxiliary information available to the adversary is sampled independently from but statistically close to the target database. Compared to (a handful of) existing inference attacks, our attacks make significantly relaxed assumptions about the nature of auxiliary information available to the adversary.

Technically, our attacks exploit insufficiencies in existing leakage-perturbation techniques as well as novel observations surrounding inevitable system-wide leakage from efficient realizations of STE. We model the attacks as optimization problems with carefully designed objective functions that are maximized via simulated annealing. We demonstrate the practical effectiveness of our attacks via extensive experimentation over real-world databases. Our attacks achieve up to 90% query reconstruction against STE implementations using recommended security parameters, with 5x greater scalability than any existing attack exploiting access pattern leakage.
Expand
Yuan Yao, Pantea Kiaei, Richa Singh, Shahin Tajik, Patrick Schaumont
ePrint Report ePrint Report
Side-channel and fault injection attacks reveal secret information by monitoring or manipulating the physical effects of computations involving secret variables. Circuit-level countermeasures help to deter these attacks, and traditionally such countermeasures have been developed for each attack vector separately. We demonstrate a multipurpose ring oscillator design - Programmable Ring Oscillator (PRO) to address both fault attacks and side-channel attacks in a generic, application-independent manner. PRO, as an integrated primitive, can provide on-chip side-channel resistance, power monitoring, and fault detection capabilities to a secure design. We present a grid of PROs monitoring the on-chip power network to detect anomalies. Such power anomalies may be caused by external factors such as electromagnetic fault injection and power glitches, as well as by internal factors such as hardware Trojans. By monitoring the frequency of the ring oscillators, we are able to detect the on-chip power anomaly in time as well as in location. Moreover, we show that the PROs can also inject a random noise pattern into a design's power consumption. By randomly switching the frequency of a ring oscillator, the resulting power-noise pattern significantly reduces the power-based side-channel leakage of a cipher. We discuss the design of PRO and present measurement results on a Xilinx Spartan-6 FPGA prototype, and we show that side-channel and fault vulnerabilities can be addressed at a low cost by introducing PRO to the design. We conclude that PRO can serve as an application-independent, multipurpose countermeasure.
Expand
Aritra Banerjee
ePrint Report ePrint Report
The idea of smart contracts has been around for a long time. The introduction of Ethereum has taken the concept of smart contracts to new heights because of its integration with Blockchain technology. As a result, the applications of smart contracts have also surged in areas such as e-Voting, Insurance, Crowdfunding, etc. In this paper, we aim to present the construction of a “Fully Anonymous e-Voting” protocol using the concepts of zkHawk and Zcash. zkHawk is a novel smart contract protocol designed during this Ph.D. that improves upon the Hawk protocol by solving the underlying anonymity problem of a trusted manager. We will leverage the concept of zk-SNARKs in Zcash to carry out the voting phase of the election and the zkHawk smart contract protocol to tally the results of the election. The voting phase employing Zcash will be initially designed with Non-Universal zk-SNARKs and improved upon with Universal zk-SNARKs.
Expand
Onur Gunlu, Joerg Kliewer, Rafael F. Schaefer, Vladimir Sidorenko
ePrint Report ePrint Report
Consider the identification (ID) via channels problem, where a receiver decides whether the transmitted identifier is its identifier, rather than decoding it. This model allows to transmit identifiers whose size scales doubly-exponentially in the blocklength, unlike common transmission codes with exponential scaling. Binary constant-weight codes (CWCs) suffice to achieve the ID capacity. Relating parameters of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two upper bounds on binary CWC sizes are proposed. These bounds are also upper bounds on identifier sizes for ID codes constructed by using binary CWCs. We propose two constructions based on optical orthogonal codes (OOCs), which are used in optical multiple access schemes, have constant-weight codewords, and satisfy cyclic cross-correlation and auto-correlation constraints. These constructions are modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs being optimal for ID. Improvements to the finite-parameter performance of both our and existing code constructions are shown by using outer codes with larger minimum distance vs. blocklength ratios. We illustrate ID regimes for which our ID code constructions perform significantly better than existing constructions. An extensive list of other modified OOCs that can be used as binary CWCs is provided.
Expand
Sara Stadler, Vitor Sakaguti, Harjot Kaur, Anna Lena Fehlhaber
ePrint Report ePrint Report
The Signal protocol is used in many messaging applications today. While it is an active research topic to design a post-quantum variant of the protocol, no such variant is currently realized in the real world. In the following document we describe a hybrid version of the Signal protocol, that will be implemented to achieve post-quantum security for Tutanota’s end-to-end encrypted e-mails.
Expand
Bo-Yeon Sim, Aesun Park, Dong-Guk Han
ePrint Report ePrint Report
This study proposes a chosen-ciphertext side-channel attack against a lattice-based key encapsulation mechanism (KEM), the third-round candidate of the national institute of standards and technology (NIST) standardization project. Unlike existing attacks that target operations such as inverse NTT and message encoding/decoding, we target Barrett Reduction in the decapsulation phase of CRYSTALS-KYBER to obtain a secret key. We show that a sensitive variable-dependent leakage of Barrett Reduction exposes an entire secret key. The results of experiments conducted on the ARM Cortex-M4 microcontroller accomplish a success rate of 100%. We only need six chosen ciphertexts for KYBER512 and KYBER768 and eight chosen ciphertexts for KYBER1024. We also show that the m4 scheme of the pqm4 library, an implementation with the ARM Cortex-M4 specific optimization (typically in assembly), is vulnerable to the proposed attack. In this scheme, six, nine, and twelve chosen ciphertexts are required for KYBER512, KYBER768, and KYBER1024, respectively.
Expand
Yanqi Gu, Stanislaw Jarecki, Hugo Krawczyk
ePrint Report ePrint Report
OPAQUE [Jarecki et al., Eurocrypt 2018] is an asymmetric password authenticated key exchange (aPAKE) protocol that is being developed as an Internet standard and for use within TLS 1.3. OPAQUE combines an Oblivious PRF (OPRF) with an authenticated key exchange to provide strong security properties, including security against pre-computation attacks (called saPAKE security). However, the security of OPAQUE relies crucially on the security of the OPRF. If the latter breaks (by cryptanalysis, quantum attacks or security compromise), the user's password is exposed to an offline dictionary attack. To address this weakness, we present KHAPE, a variant of OPAQUE that does not require the use of an OPRF to achieve aPAKE security, resulting in improved resilience and near-optimal computational performance. An OPRF can be optionally added to KHAPE, for enhanced saPAKE security, but without opening the password to an offline dictionary attack upon OPRF compromise.

In addition to resilience to OPRF compromise, a DH-based implementation of KHAPE (using HMQV) offers the best performance among aPAKE protocols in terms of exponentiations with less than the cost of an exponentiation on top of an UNauthenticated Diffie-Hellman exchange. KHAPE uses three messages if the server initiates the exchange or four when the client does (one more than OPAQUE in the latter case).

All results in the paper are proven within the UC framework in the ideal cipher model. Of independent interest is our treatment of key-hiding AKE which KHAPE uses as a main component as well as our UC proofs of AKE security for protocols 3DH (a basis of Signal), HMQV and SKEME, that we use as efficient instantiations of KHAPE.
Expand
David Chaum, Mario Larangeira, Mario Yaksetig, William Carter
ePrint Report ePrint Report
We introduce a new key generation mechanism where users can generate a ``back up key'', securely nested inside the secret key of a signature scheme.

Our main motivation is that in case of leakage of the secret key, established techniques based on zero-knowledge proofs of knowledge are void since the key becomes public. On the other hand, the ``back up key'', which is secret, can be used to generate a ``proof of ownership'', i.e., only the real owner of this secret key can generate such a proof. To the best of our knowledge, this extra level of security is novel, and could have already been used in practice, if available, in digital wallets for cryptocurrencies that suffered massive leakage of account private keys. In this work, we formalize the notion of ``Proof of Ownership'' and ``Fallback'' as new properties. Then, we introduce our construction, which is compatible with major designs for wallets based on ECDSA, and adds a $\mbox{W-OTS}^{+}$ signing key as a ``back up key''. Thus offering a quantum secure fallback. This design allows the hiding of any quantum secure signature key pair, and is not exclusive to $\mbox{W-OTS}^{+}$. Finally, we briefly discuss the construction of multiple generations of proofs of ownership.
Expand
Vipul Goyal, Yifan Song, Akshayaram Srinivasan
ePrint Report ePrint Report
Consider a scenario where Alice stores some secret data $s$ on $n$ servers using a $t$-out-of-$n$ secret sharing scheme. Trudy (the collector) is interested in the secret data of Alice and is willing to pay for it. Trudy publishes an advertisement on the internet which describes an elaborate cryptographic scheme to collect the shares from the $n$ servers. Each server who decides to submit its share is paid a hefty monetary reward and is guaranteed ``immunity" from being caught or prosecuted in a court for violating its service agreement with Alice. Bob is one of the servers and sees this advertisement. On examining the collection scheme closely, Bob concludes that there is no way for Alice to prove anything in a court that he submitted his share. Indeed, if Bob is rational, he might use the cryptographic scheme in the advertisement and submit his share since there are no penalties and no fear of being caught and prosecuted. Can we design a secret sharing scheme which Alice can use to avoid such a scenario?

We introduce a new primitive called as Traceable Secret Sharing to tackle this problem. In particular, a traceable secret sharing scheme guarantees that a cheating server always runs the risk of getting traced and prosecuted by providing a valid evidence (which can be examined in a court of law) implicating its dishonest behavior. We explore various definitional aspects and show how they are highly non-trivial to construct (even ignoring efficiency aspects). We then give an efficient construction of traceable secret sharing assuming the existence of a secure two-party computation protocol. We also show an application of this primitive in constructing traceable protocols for multi-server delegation of computation.
Expand

28 June 2021

NXP Semiconductors
Job Posting Job Posting
Your Tasks: • Specification of innovative and disruptive crypto & security solutions • Definition of crypto & security algorithms and related IP architectures • Definition of advanced crypto protocols • Definition of crypto & security mechanisms in hardware, firmware, etc. • Specification and review of crypto & security architectures • Detailed attack modeling and security mechanism specification for hardware and software blocks • Advising and training the product and IP teams on design, implementation and test • Root cause analysis of security defects • Technical interface to customers, evaluation labs and to the product development team • Certification support and technical interface with evaluator and certifier Your Profile: • Have a PhD/Master in Cryptography, Security or Mathematics • Very good knowledge of cryptography (incl. symmetric and asymmetric crypto) • Very good knowledge of discrete mathematics, algebra and number theory • Good knowledge of SoCs and/or Secure Element products • Good knowledge of crypto hardware implementation • Strong security background • Have >5 years of experience in embedded security • Used to an independent working style • Be willing to listen and to adapt • Very good communication skills • Be willing to travel

Closing date for applications:

Contact: Ulrich Althen

More information: https://nxp.wd3.myworkdayjobs.com/careers/job/Gratkorn/Principal-Cryptographer--m-f-d-_R-10028227

Expand
Nanjing City, China, 17 December - 19 December 2021
Event Calendar Event Calendar
Event date: 17 December to 19 December 2021
Submission deadline: 8 August 2021
Notification: 12 September 2021
Expand
University of Surrey
Job Posting Job Posting
Closing Date 5th September 2021

The Department of Computer Science at the University of Surrey is seeking to appoint two Lecturers / Senior Lecturers in Cyber Security to strengthen its research within the Surrey Centre for Cyber Security (SCCS) and to support the Department’s ambitious strategic growth in this area. The appointments are on a full-time and permanent basis.

Of particular interest are the following research areas: applied cryptography, privacy enhancing technologies (incl. anonymisation, secure multi-party computation, computing on encrypted data), software security (e.g., malware analysis), system security (incl., security of autonomous or cyber-physical systems), security architectures (incl., trusted computing, TEEs), security protocols for blockchain and/or machine learning, or tool-assisted formal verification of security and privacy.

The Department of Computer Science has a world-class reputation in cyber security and regularly publishes at top-tier conferences and journals. The Department is home to Surrey Centre for Cyber Security (SCCS) and Surrey is only one of four institutions in the UK holding recognition from the National Cyber Security Centre as an Academic Centre of Excellence in both Cyber Security Research and in Cyber Security Education (Gold).

SCCS maintains close links with leading industries, the public sector and governmental bodies, leading to a strong heritage of real-world impact. The Department has made significant investment in its facilities with a new 200-seater computer science teaching laboratory, a virtual cloud computing platform, a secure systems facility and an HPC cluster for research.

We are interested in outstanding candidates with a strong record of publications in top-tier cyber security venues and, in particular for the Senior Lecturer post, with an established network of international collaborators from academia and/or industry and experience in attracting sustainable research funding.

Closing date for applications:

Contact:
Head of Department: Dr Mark Manulis (m.manulis@surrey.ac.uk).
Director of SCCS: Prof Steve Schneider (s.schneider@surrey.ac.uk)

More information: https://jobs.surrey.ac.uk/vacancy.aspx?ref=027721

Expand
Institute for Infocomm Research, Singapore
Job Posting Job Posting
A few research scientist positions are available at the Institute for Infocomm Research (I2R), A*STAR, Singapore. We are looking for capable and responsible scientists to work on and contribute to collaborative/federated/split/multi-party learning (data valuation, privacy, black-box and white-box models, etc.), machine learning, etc. Candidates with experience in privacy-preserving technologies (homomorphic encryption, MPC, differential privacy, etc.) in machine learning, particularly on secure algorithm/protocol design, are preferred. Successful candidates will work with a team to conduct R&D on applications and domains using a secure collaboration learning framework and time-series data. They will also have opportunities to work with local and international collaborators in academia. To apply for the position, please click on the link https://careers.a-star.edu.sg/jobdetails.aspx?ID=4147

Closing date for applications:

Contact: Singee

More information: https://careers.a-star.edu.sg/jobdetails.aspx?ID=4147

Expand

24 June 2021

Jan Ferdinand Sauer, Alan Szepieniec
ePrint Report ePrint Report
Many new ciphers target a concise algebraic description for efficient evaluation in a proof system or a multi-party computation. This new target for optimization introduces algebraic vulnerabilities, particularly involving Gröbner basis analysis. Unfortunately, the literature on Gröbner bases tends to be either purely mathematical, or focused on small fields. In this paper, we survey the most important algorithms and present them in an intuitive way. The discussion of their complexities enables researchers to assess the security of concrete arithmetization-oriented ciphers. Aside from streamlining the security analysis, this paper helps newcomers enter the field.
Expand
Panagiotis Chatzigiannis, Foteini Baldimtsi
ePrint Report ePrint Report
While privacy preserving distributed payment schemes manage to drastically improve user privacy, they come at the cost of generating new regulatory concerns: in a private ledger the transactions cannot be subject to any level of auditing, and thus are not compatible with tracing illegal behaviors. In this work we present MiniLedger, a distributed payment system which not only guarantees the privacy of transactions, but also offers built-in functionalities for various types of audits by any external authority. MiniLedger is the first private and auditable payment system with storage costs independent of the number of transactions. To achieve such a storage improvement, we introduce pruning functionalities for the transaction history while maintaining integrity and auditing. We provide formal security definitions and a number of extensions for various auditing levels. Our evaluation results show that MiniLedger is practical in terms of storage requiring as low as 70KB per participant for 128 bits of security, and depending on the implementation choices, can prune 1 million transactions in less than a second.
Expand
Nicolai Müller, Thorben Moos, Amir Moradi
ePrint Report ePrint Report
Efficient implementation of Boolean masking in terms of low latency has evolved into a hot topic due to the necessity of embedding a physically secure and at-the-same-time fast implementation of cryptographic primitives in e.g., the memory encryption of pervasive devices. Instead of fully minimizing the circuit's area and randomness requirements at the cost of latency, the focus has changed into finding optimal tradeoffs between the circuit area and the execution time. The main latency bottleneck in hardware masking lies in the need for registers to stop the propagation of glitches and maintain non-completeness. Usually, an exponentially growing number of shares (hence an extremely large circuit), as well as a high demand for fresh randomness, are the result of avoiding registers in a securely masked hardware implementation of a block cipher. In this paper, we present several first-order secure and low-latency implementations of PRINCE. In particular, we show how to realize the masked variant of round-based PRINCE with only a single register stage per cipher round. We compare the resulting architectures, based on the popular TI and GLM masking scheme based on the area, latency, and randomness requirements and point out that both designs are suited for specific use cases.
Expand
Cécile Delerablée, Lénaïck Gouriou, David Pointcheval
ePrint Report ePrint Report
This paper revisits Key-Policy Attribute-Based Encryption, allowing the delegation of keys, traceability of compromised keys and key anonymity, as additional properties. Whereas delegation of rights has been addressed in the seminal paper by Goyal et al? in 2006, introducing KPABE, this nice feature has almost been neglected in all subsequent works in favor of better security levels. However, in multi-device scenarios, this is quite important to allow users to independently authorize their own devices, still with some tracing capabilities and some anonymity properties.

To this aim, we define a new primitive with switchable attributes, in both the ciphertexts and the keys, and new indistinguishability properties. We then provide concrete and efficient instantiations with adaptive security under the sole SXDH assumption in the standard model.
Expand
Balthazar Bauer, Georg Fuchsbauer, Antoine Plouviez
ePrint Report ePrint Report
The one more-discrete logarithm assumption (OMDL) underlies the security analysis of identification protocols, blind signature and multi-signature schemes, such as blind Schnorr signatures and the recent MuSig2 multi-signatures. As these schemes produce standard Schnorr signatures, they are compatible with existing systems, e.g. in the context of blockchains. OMDL is moreover assumed for many results on the impossibility of certain security reductions.

Despite its wide use, surprisingly, OMDL is lacking any rigorous analysis; there is not even a proof that it holds in the generic group model (GGM). (We show that a claimed proof is flawed.) In this work we give a formal proof of OMDL in the GGM. We also prove a related assumption, the one-more computational Diffie-Hellman assumption, in the GGM. Our proofs deviate from prior proofs in the GGM and replace the use of the Schwartz-Zippel Lemma by a new argument.
Expand
Iggy van Hoof, Elena Kirshanova, Alexander May
ePrint Report ePrint Report
Ternary LWE, i.e., LWE with coefficients of the secret and the error vectors taken from $\{-1, 0, 1\}$, is a popular choice among NTRU-type cryptosystems and some signatures schemes like BLISS and GLP.

In this work we consider quantum combinatorial attacks on ternary LWE. Our algorithms are based on the quantum walk framework of Magniez-Nayak-Roland-Santha. At the heart of our algorithms is a combinatorial tool called the representation technique that appears in algorithms for the subset sum problem. This technique can also be applied to ternary LWE resulting in faster attacks. The focus of this work is quantum speed-ups for such representation-based attacks on LWE.

When expressed in terms of the search space $\mathcal{S}$ for LWE keys, the asymptotic complexity of the representation attack drops from $\mathcal{S}^{0.24}$ (classical) down to $\mathcal{S}^{0.19}$ (quantum). This translates into noticeable attack's speed-ups for concrete NTRU instantiations like NTRU-HRSS and NTRU Prime. Our algorithms do not undermine current security claims for NTRU or other ternary LWE based schemes, yet they can lay ground for improvements of the combinatorial subroutines inside hybrid attacks on LWE.
Expand
◄ Previous Next ►