International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

17 September 2021

Benny Applebaum, Aarushi Goel
ePrint Report ePrint Report
We introduce the notion of \emph{elementary MPC} reductions that allow us to securely compute a functionality $f$ by making a single call to a constant-degree ``non-cryptographic'' functionality $g$ without requiring any additional interaction. Roughly speaking, ``non-cryptographic'' means that $g$ does not make use of cryptographic primitives, though the parties can locally call such primitives.

Classical MPC results yield such elementary reductions in various cases including the setting of passive security with full corruption threshold $t<n$ (Yao, FOCS'86; Beaver, Micali, and Rogaway, STOC'90), the setting of full active security against a corrupted minority $t<n/2$ (Damg{\aa}rd and Ishai, Crypto'05), and, for $\NCone$ functionalities, even for the setting of full active (information-theoretic) security with full corruption threshold of $t<n$ (Ishai and Kushilevitz, FOCS'00). This leaves open the existence of an elementary reduction that achieves full active security in the dishonest majority setting for all efficiently computable functions.

Our main result shows that such a reduction is unlikely to exist. Specifically, the existence of a computationally secure elementary reduction that makes black-box use of a PRG and achieves a very weak form of partial fairness (e.g., that holds only when the first party is not corrupted) would allow us to realize any efficiently-computable function by a \emph{constant-round} protocol that achieves a non-trivial notion of information-theoretic passive security. The existence of the latter is a well-known 3-decade old open problem in information-theoretic cryptography (Beaver, Micali, and Rogaway, STOC'90).

On the positive side, we observe that this barrier can be bypassed under any of the following relaxations: (1) non-black-box use of a pseudorandom generator; (2) weaker security guarantees such as security with identifiable abort; or (3) an additional round of communication with the functionality $g$.
Expand
Lior Rotem, Gil Segev
ePrint Report ePrint Report
Vector commitments (VCs), enabling to commit to a vector and locally reveal any of its entries, play a key role in a variety of both classic and recently-evolving applications. However, security notions for VCs have so far focused on passive attacks, and non-malleability notions considering active attacks have not been explored. Moreover, existing frameworks that may enable to capture the non-malleability of VCs seem either too weak (non-malleable non-interactive commitments that do not account for the security implications of local openings) or too strong (non-malleable zero-knowledge sets that support both membership and non-membership proofs).

We put forward a rigorous framework capturing the non-malleability of VCs, striking a careful balance between the existing weaker and stronger frameworks: We strengthen the framework of non-malleable non-interactive commitments by considering attackers that may be exposed to local openings, and we relax the framework of non-malleable zero-knowledge sets by focusing on membership proofs. In addition, we strengthen both frameworks by supporting (inherently-private) updates to entries of committed vectors, and discuss the benefits of non-malleable VCs in the context of both UTXO-based and account-based stateless blockchains, and in the context of simultaneous multi-round auctions (that have been adopted by the US Federal Communications Commission as the standard auction format for selling spectrum ranges).

Within our framework we present a direct approach for constructing non-malleable VCs whose efficiency essentially matches that of the existing standard VCs. Specifically, we show that any VC can be transformed into a non-malleable one, relying on a new primitive that we put forth. Our new primitive, locally-equivocable commitments with all-but-one binding, is evidently both conceptually and technically simpler compared to multi-trapdoor mercurial trapdoor commitments (the main building block underlying existing non-malleable zero-knowledge sets), and admits more efficient instantiations based on the same number-theoretic assumptions.
Expand
Ittai Abraham, Gilad Asharov, Avishay Yanai
ePrint Report ePrint Report
Secure computation enables $n$ mutually distrustful parties to compute a function over their private inputs jointly. In 1988 Ben-Or, Goldwasser, and Wigderson (BGW) demonstrated that any function can be computed with perfect security in the presence of a malicious adversary corrupting at most $t< n/3$ parties. After more than 30 years, protocols with perfect malicious security, with round complexity proportional to the circuit's depth, still require sharing a total of $O(n^2)$ values per multiplication. In contrast, only $O(n)$ values need to be shared per multiplication to achieve semi-honest security. Indeed sharing $\Omega(n)$ values for a single multiplication seems to be the natural barrier for polynomial secret sharing-based multiplication.

In this paper, we close this gap by constructing a new secure computation protocol with perfect, optimal resilience and malicious security that incurs sharing of only $O(n)$ values per multiplication, thus, matching the semi-honest setting for protocols with round complexity that is proportional to the circuit depth. Our protocol requires a constant number of rounds per multiplication. Like BGW, it has an overall round complexity that is proportional only to the multiplicative depth of the circuit. Our improvement is obtained by a novel construction for {\em weak VSS for polynomials of degree-$2t$}, which incurs the same communication and round complexities as the state-of-the-art constructions for {\em VSS for polynomials of degree-$t$}.

Our second contribution is a method for reducing the communication complexity for any depth-1 sub-circuit to be proportional only to the size of the input and output (rather than the size of the circuit). This implies protocols with \emph{sublinear communication complexity} (in the size of the circuit) for perfectly secure computation for important functions like matrix multiplication.
Expand
Carlos Cid, John Petter Indrøy, Håvard Raddum
ePrint Report ePrint Report
In this paper we propose FASTA, a stream cipher design optimised for implementation over popular fully homomorphic encryption schemes. A number of symmetric encryption ciphers have been recently proposed for FHE applications, e.g. the block cipher LowMC, and the stream ciphers Rasta (and variants), FLIP and Kreyvium. The main design criterion employed in these ciphers has typically been to minimise the multiplicative complexity of the algorithm. However, other aspects affecting their efficient evaluation over common FHE libraries are often overlooked, compromising their real-world performance. Whilst FASTA may also be considered as a variant of Rasta, it has its parameters and linear layer especially chosen to allow efficient implementation over the BGV scheme, particularly as implemented in the HElib library. This results in a speedup by a factor of 25 compared to the most efficient publicly available implementation of Rasta. FASTA’s target is BGV, as implemented in HElib, however the design ideas introduced in the cipher could also be potentially employed to achieve improvements in the homomorphic evaluation in other popular FHE schemes/libraries. We do consider such alternatives in this paper (e.g. BFV and BGVrns, as implemented in SEAL and PALISADE), but argue that, unlike BGV in HElib, it is more challenging to make use of their parallelism in a Rasta-like stream cipher design.
Expand
Florette Martinez
ePrint Report ePrint Report
We introduce lattice-based practical seed-recovery attacks against two efficient number-theoretic pseudo-random number generators: the fast knapsack generator and a family of combined multiple recursive generators. The fast knapsack generator was introduced in 2009 by Von Zur Gathen and Shparlinski. It generates pseudo-random numbers very efficiently with strong mathematical guarantees on their statistical properties but its resistance to cryptanalysis was left open since 2009. The given attacks are surprisingly efficient when the truncated bits do not represent a too large proportion of the internal states. Their complexities do not strongly increase with the size of parameters, only with the proportion of discarded bits. A multiple recursive generator is a pseudo-random number generator based on a constant-recursive sequence. A combined multiple recursive generator is a pseudo-random number generator based on combining two or more multiple recursive generators. L’Écuyer presented the general construction in 1996 and a popular instantiation deemed MRG32k3a in 1999. We use algebraic relations of both pseudo-random generators with underlying algebraic generators to show that they are cryptographically insecure. We provide a theoretical analysis as well as efficient implementations.
Expand
Emmanouil Doulgerakis, Thijs Laarhoven, Benne de Weger
ePrint Report ePrint Report
The main idea behind lattice sieving algorithms is to reduce a sufficiently large number of lattice vectors with each other so that a set of short enough vectors is obtained, including a basis of the lattice. It is therefore natural to study vectors which cannot be reduced. In this work we give a concrete definition of an irreducible vector and study the properties of the set of all such vectors. We show that the set of irreducible vectors is a subset of the set of relevant vectors and study its properties. For extremal lattices this set may contain as many as $2^n$ vectors, which leads us to define the notion of a complete system of irreducible vectors, whose size can be upper-bounded by the kissing number. We study properties of this set and observe a close relation to heuristic sieving algorithms. Finally we briefly examine the use of this set in the study of lattice problems such as SVP, SIVP and CVPP. The introduced notions, as well as various results derived along the way, may provide further insights into lattice algorithms and motivate new research into understanding these algorithms better.
Expand
Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy, Samuel Pagliarini
ePrint Report ePrint Report
This paper presents a design space exploration for SABER, one of the finalists in NIST’s quantum-resistant public-key cryptographic standardization effort. Our design space exploration targets a 65nmASIC platform and has resulted in the evaluation of 6 different architectures. Our exploration is initiated by setting a baseline architecture which is ported from FPGA. In order to improve the clock frequency (the primary goal in our exploration), we have employed several optimizations: (i) use of compiled memories in a ‘smart synthesis’ fashion, (ii) pipelining, and (iii) logic sharing between SABER building blocks. The most optimized architecture utilizes four register files, achieves a remarkable clock frequency of 1&#119866;&#119867;&#119911; while only requiring an area of 0.314&#119898;&#119898;2. Moreover, physical synthesis is carried out for this architecture and a tapeout-ready layout is presented. The estimated dynamic power consumption of the high-frequency architecture is approximately 184mW for key generation and 187mW for encapsulation or decapsulation operations. These results strongly suggest that our optimized accelerator architecture is well suited for high-speed cryptographic applications.
Expand
Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, Jun Pang
ePrint Report ePrint Report
Belenios is an online voting system that provides a strong notion of election verifiability, where no single party has to be trusted, and security holds as soon as either the voting registrar or the voting server is honest. It was formally proved to be secure, making the assumption that no further ballots are cast on the bulletin board after voters verified their ballots. In practice, however, revoting is allowed and voters can verify their ballots anytime. This gap between formal proofs and use in practice leaves open space for attacks, as has been shown recently. In this paper we make two simple additions to Belenios and we formally prove that the new version satisfies the expected verifiability properties. Our proofs are automatically performed with the Tamarin prover, under the assumption that voters are allowed to vote at most four times.
Expand
Fuyuki Kitagawa, Ryo Nishimaki
ePrint Report ePrint Report
Key dependent message (KDM) security is a security notion that guarantees confidentiality of communication even if secret keys are encrypted. KDM security has found a number of applications in practical situations such as hard-disk encryption systems, anonymous credentials, and bootstrapping of fully homomorphic encryptions. Recently, it also found an application in quantum delegation protocols as shown by Zhang (TCC 2019).

In this work, we investigate the KDM security of existing practical public-key encryption (PKE) schemes proposed in the quantum random oracle model (QROM). Concretely, we study a PKE scheme whose KEM is constructed by using Fujisaki-Okamoto (FO) transformations in the QROM. FO transformations are applied to IND-CPA secure PKE schemes and yield IND-CCA secure key encapsulation mechanisms (KEM). Then, we show the following results.

- We can reduce the KDM-CPA security in the QROM of a PKE scheme whose KEM is derived from any of the FO transformations proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use one-time-pad (OTP) as DEM to convert KEM into PKE.

- We can reduce the KDM-CCA security in the QROM of a PKE scheme whose KEM is derived from a single variant of the FO transformation proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use OTP-then-MAC construction as DEM to convert KEM into PKE. Also, we require a mild injectivity assumption for the underlying IND-CPA secure PKE scheme.

In order to avoid square root security loss, we use a double-sided one-way to hiding (O2H) lemma proposed by Kuchta et al. (EUROCRYPT 2020). In the context of KDM security, there is a technical hurdle for using double-sided O2H lemma due to the circularity issue. Our main technical contribution is to overcome the hurdle.
Expand
Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu, Arkady Yerukhimovich
ePrint Report ePrint Report
Fully homomorphic encryption (FHE) enables a simple, attractive framework for secure search. Compared to other secure search systems, no costly setup procedure is necessary; it is sufficient for the client merely to upload the encrypted database to the server. Confidentiality is provided because the server works only on the encrypted query and records. While the search functionality is enabled by the full homomorphism of the encryption scheme.

For this reason, researchers have been paying increasing attention to this problem. Since Akavia et al. (CCS 2018) presented a framework for secure search on FHE encrypted data and gave a working implementation called SPiRiT, several more efficient realizations have been proposed.

In this paper, we identify the main bottlenecks of this framework and show how to significantly improve the performance of FHE-base secure search. In particular,

1. To retrieve $\ell$ matching items, the existing framework needs to repeat the protocol $\ell$ times sequentially. In our new framework, all matching items are retrieved in parallel in a single protocol execution.

2. The most recent work by Wren et al. (CCS 2020) requires $O(n)$ multiplications to compute the first matching index. Our solution requires no homomorphic multiplication, instead using only additions and scalar multiplications to encode all matching indices.

3. Our implementation and experiments show that to fetch 16 matching records, our system gives an 1800X speed-up over the state of the art in fetching the query results resulting in a 26X speed-up for the full search functionality.
Expand
Gaëtan Leurent, Clara Pernot, André Schrottenloher
ePrint Report ePrint Report
Simon and Simeck are two lightweight block ciphers with a simple round function using only word rotations and a bit-wise AND operation. Previous work has shown a strong clustering effect for differential and linear cryptanalysis, due to the existence of many trails with the same inputs and outputs. In this paper, we explore this clustering effect by exhibiting a class of high probability differential and linear trails where the active bits stay in a fixed window of $w$ bits. Instead of enumerating a set of good trails contributing to a differential or a linear approximation, we compute the probability distribution over this space, including all trails in the class. This results in stronger distinguishers than previously proposed, and we describe key recovery attacks against Simon and Simeck improving the previous results by up to 7 rounds. In particular, we obtain an attack against 42-round Simeck64, leaving only two rounds of security margin, and an attack against 45-round Simon96/144, reducing the security margin from 16 rounds to 9 rounds.
Expand
Mingyu Liang, Ioanna Karantaidou, Foteini Baldimtsi, Dov Gordon, Mayank Varia
ePrint Report ePrint Report
We propose a new theoretical approach for building anonymous mixing mechanisms for cryptocurrencies. Rather than requiring a fully uniform permutation during mixing, we relax the requirement, insisting only that neighboring permutations are similarly likely. This is defined formally by borrowing from the definition of differential privacy. This relaxed privacy definition allows us to greatly reduce the amount of interaction and computation in the mixing protocol. Our construction achieves $O(n \cdot polylog(n))$ computation time for mixing $n$ addresses, whereas all other mixing schemes require $O(n^2)$ total computation across all parties. Additionally, we support a smooth tolerance of fail-stop adversaries and do not require any trusted setup. We analyze the security of our generic protocol under the UC framework, and under a stand-alone, game-based definition. We finally describe an instantiation using ring signatures and confidential transactions.
Expand
Salil Vadhan, Tianhao Wang
ePrint Report ePrint Report
We initiate a study of the composition properties of interactive differentially private mechanisms. An interactive differentially private mechanism is an algorithm that allows an analyst to adaptively ask queries about a sensitive dataset, with the property that an adversarial analyst's view of the interaction is approximately the same regardless of whether or not any individual's data is in the dataset. Previous studies of composition of differential privacy have focused on non-interactive algorithms, but interactive mechanisms are needed to capture many of the intended applications of differential privacy and a number of the important differentially private primitives.

We focus on concurrent composition, where an adversary can arbitrarily interleave its queries to several differentially private mechanisms, which may be feasible when differentially private query systems are deployed in practice. We prove that when the interactive mechanisms being composed are pure differentially private, their concurrent composition achieves privacy parameters (with respect to pure or approximate differential privacy) that match the (optimal) composition theorem for noninteractive differential privacy. We also prove a composition theorem for interactive mechanisms that satisfy approximate differential privacy. That bound is weaker than even the basic (suboptimal) composition theorem for noninteractive differential privacy, and we leave closing the gap as a direction for future research, along with understanding concurrent composition for other variants of differential privacy.
Expand
Miti Mazmudar, Stan Gurtler, Ian Goldberg
ePrint Report ePrint Report
Peer-to-peer distributed hash tables (DHTs) rely on volunteers to contribute their computational resources, such as disk space and bandwidth. In order to incentivize these node operators of privacy-preserving DHTs, it is important to prevent exposing them to the data that is stored on the DHT and/or queried for. Vasserman et al.'s CROPS aimed at providing plausible deniability to server nodes by encrypting stored content. However, node operators are still exposed to the contents of queries. We provide an architecture that uses information-theoretic private information retrieval to efficiently render a server node incapable of determining what content was retrieved in a given request by a user. We illustrate an integration of our architecture with the aforementioned system. Finally, we simulate our system and show that it has a small communication and performance overhead over other systems without this privacy guarantee, and smaller overheads with respect to the closest related work.
Expand
Alex Biryukov, Luan Cardoso dos Santos, Daniel Feher, Vesselin Velichkov, Giuseppe Vitto
ePrint Report ePrint Report
We propose a tool for automated truncation of differential trails in ciphers using modular addition, bitwise rotation, and XOR (ARX). The tool takes as input a differential trail and produces as output a set of truncated differential trails. The set represents all possible truncations of the input trail according to certain predefined rules. A linear-time algorithm for the exact computation of the differential probability of a truncated trail that follows the truncation rules is proposed. We further describe a method to merge the set of truncated trails into a compact set of non-overlapping truncated trails with associated probability and we demonstrate the application of the tool on block cipher Speck64. We have also investigated the effect of clustering of differential trails around a fixed input trail. The best cluster that we have found for $15$ rounds has probability $2^{-55.03}$ (consisting of 389 unique output differences) which allows us to build a distinguisher using $128$ times less data than the one based on just the single best trail, which has probability $2^{-62}$. Moreover, we show examples for Speck64 where a cluster of trails around a suboptimal (in terms of probability) input trail results in higher overall probability compared to a cluster obtained around the best differential trail.
Expand
David Cerezo Sánchez
ePrint Report ePrint Report
JUBILEE is a securely computed mechanism for debt relief and forgiveness in a frictionless manner without involving trusted third parties, leading to more harmonious debt settlements by incentivising the parties to truthfully reveal their private information. JUBILEE improves over all previous methods:

- individually rational, incentive-compatible, truthful/strategy-proof, ex-post efficient, optimal mechanism for debt relief and forgiveness with private information

- by the novel introduction of secure computation techniques to debt relief, the “blessing of the debtor ” is hereby granted for the first time: debt settlements with higher expected profits and a higher probability of success than without using secure computation

A simple and practical implementation is included for “The Secure Spreadsheet”. Another implementation is realised using Raziel smart contracts on a blockchain with Pravuil consensus.
Expand
Noam Mazor, Jiapeng Zhang
ePrint Report ePrint Report
Two of the most useful cryptographic primitives that can be constructed from one-way functions are pseudorandom generators (PRGs) and universal one-way hash functions (UOWHFs). In order to implement them in practice, the efficiency of such constructions must be considered. The three major efficiency measures are: the seed length, the call complexity to the one-way function, and the adaptivity of these calls. Still, the optimal efficiency of these constructions is not yet fully understood: there exist gaps between the known upper bound and the known lower bound for black-box constructions.

A special class of one-way functions called unknown-regular one-way functions is much better understood. Haitner, Harnik and Reingold (CRYPTO 2006) presented a PRG construction with semi-linear seed length and linear number of calls based on a method called randomized iterate. Ames, Gennaro and Venkitasubramaniam (TCC 2012) then gave a construction of UOWHF with similar parameters and using similar ideas. On the other hand, Holenstein and Sinha (FOCS 2012) and Barhum and Holenstein (TCC 2013) showed an almost linear call-complexity lower bound for black-box constructions of PRGs and UOWHFs from one-way functions. Hence Haitner et al. and Ames et al. reached tight constructions (in terms of seed length and the number of calls) of PRGs and UOWHFs from regular one-way functions. These constructions, however, are adaptive.

In this work, we present non-adaptive constructions for both primitives which match the optimal call-complexity given by Holenstein and Sinha and Barhum and Holenstein. Our constructions, besides being simple and non-adaptive, are robust also for almost-regular one-way functions.
Expand
Stéphanie Delaune, Patrick Derbez, Arthur Gontier, Charles Prud'homme
ePrint Report ePrint Report
The cube attack is a powerful cryptanalysis technique against symmetric cryptosystems, especially for stream ciphers. One of the key step in a cube attack is recovering the superpoly. The division property has been introduced to cube attacks with the aim first to identify variables/monomials that are not involved in the superpoly. Recently,some improved versions of this technique allowing the recovery of the exact superpoly have been developed and applied on various stream ciphers [13,15]. In this paper, we propose a new model to recover the exact superpoly of a stream cipher given a cube. We model the polynomials involved in the stream cipher as a directed graph. It happens that this structure handles some of the monomial cancellations more easily than those based on division property, and this leads to better timing results. We propose two implementations of our model, one in MILP and one in CP, which are up to 10 times faster than the original division property-based model from Hao et al. [13], and consistently 30 to 60 times faster than the monomial prediction-based model from Hu et al. [15].
Expand
SeongHyuck Lim, JaeSeung Han, Tae-Ho Lee, Dong-Guk Han
ePrint Report ePrint Report
With the recent development of Internet of Things (IoT) devices, related security issues are also increasing. In particular, the possibility of accessing and hijacking cryptographic devices is also increasing due to the rapid increase in usage of these devices. Therefore, research on cryptographic technologies that can provide a safe environment even in resource-constrained environments has been actively conducted. Among them, there are increasing security issues of side-channel analysis for devices due to their physical accessibility. The lightweight block cipher PIPO was recently proposed in ICISC 2020 to address these issues. The PIPO has the characteristic of providing robust security strength while having less overhead when using the side-channel analysis countermeasures. A differential fault attack is a type of side-channel analysis that induces fault in cryptographic operations and utilizes difference information that occurs. Differential fault attacks on the PIPO have not yet been studied. This paper proposed a single-bit flip-based differential fault attack on the lightweight block cipher PIPO for the first time. We show that simulations enable the recovery of the correct secret key with about 98% probability through 64 fault ciphertexts. Therefore, the PIPO does not provide security against differential fault attacks. When using the PIPO cipher on IoT devices, designers must apply appropriate countermeasures against fault injection attacks.
Expand
Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanadhya
ePrint Report ePrint Report
In this work, we present a configurable and side channel resistant implementation of the post-quantum key-exchange algorithm Crystals-Kyber. The implemented design can be configured for different performance and area requirements leading to different trade-offs for different applications. A low area implementation can be achieved in 5269 LUTs and 2422 FFs, whereas a high performance implementation required 7151 LUTs and 3730 FFs. Due to a deeply pipelined architecture, a high operating speed of more than 250 MHz could be achieved on 28nm Xilinx FPGAs. The side channel resistance is implemented using a carefully chosen set of techniques resulting in a low overhead of less than 5%. To the best of our knowledge, this work presents the first side-channel attack protected configurable accelerator for Crystals-Kyber. Furthermore, one of the configuration choices results in the smallest hardware implementation of Crystals-Kyber known in literature.
Expand
◄ Previous Next ►