IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
17 September 2021
Susumu Kiyoshima
We study the problem of obtaining 2-round interactive arguments for NP with weak zero-knowledge (weak ZK) [Dwork et al., 2003] or with strong witness indistinguishability (strong WI) [Goldreich, 2001] under polynomially hard falsifiable assumptions. We consider both the delayed-input setting [Jain et al., 2017] and the standard non-delayed-input setting, where in the delayed-input setting, (i) prover privacy is only required to hold against delayed-input verifiers (which learn statements in the last round of the protocol) and (ii) soundness is required to hold even against adaptive provers (which choose statements in the last round of the protocol).
Concretely, we show the following black-box (BB) impossibility results by relying on standard cryptographic primitives.
1. It is impossible to obtain 2-round delayed-input weak ZK arguments under polynomially hard falsifiable assumptions if BB reductions are used to prove soundness. This result holds even when non-black-box techniques are used to prove weak ZK.
2. It is impossible to obtain 2-round non-delayed-input strong WI arguments and 2-round publicly verifiable delayed-input strong WI arguments under polynomially hard falsifiable assumptions if a natural type of BB reductions, called "oblivious" BB reductions, are used to prove strong WI.
3. It is impossible to obtain 2-round delayed-input strong WI arguments under polynomially hard falsifiable assumptions if BB reductions are used to prove both soundness and strong WI (the BB reductions for strong WI are required to be oblivious as above). Compared with the above result, this result no longer requires public verifiability in the delayed-input setting.
Concretely, we show the following black-box (BB) impossibility results by relying on standard cryptographic primitives.
1. It is impossible to obtain 2-round delayed-input weak ZK arguments under polynomially hard falsifiable assumptions if BB reductions are used to prove soundness. This result holds even when non-black-box techniques are used to prove weak ZK.
2. It is impossible to obtain 2-round non-delayed-input strong WI arguments and 2-round publicly verifiable delayed-input strong WI arguments under polynomially hard falsifiable assumptions if a natural type of BB reductions, called "oblivious" BB reductions, are used to prove strong WI.
3. It is impossible to obtain 2-round delayed-input strong WI arguments under polynomially hard falsifiable assumptions if BB reductions are used to prove both soundness and strong WI (the BB reductions for strong WI are required to be oblivious as above). Compared with the above result, this result no longer requires public verifiability in the delayed-input setting.
Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, Zhimin Ding
We introduce a novel generic ring signature construction, called DualRing, which can be built from several canonical identification schemes (such as Schnorr identification). DualRing differs from the classical ring signatures by its formation of two rings: a ring of commitments and a ring of challenges. It has a structural difference from the common ring signature approaches based on accumulators or zero-knowledge proofs of the signer index. Comparatively, DualRing has a number of unique advantages.
Considering the DL-based setting by using Schnorr identification scheme, our DualRing structure allows the signature size to be compressed into logarithmic size via an argument of knowledge system such as Bulletproofs. We further improve on the Bulletproofs argument system to eliminate about half of the computation while maintaining the same proof size. We call this Sum Argument and it can be of independent interest. This DL-based construction, named DualRing-EC, using Schnorr identification with Sum Argument has the shortest ring signature size in the literature without using trusted setup.
Considering the lattice-based setting, we instantiate DualRing by a canonical identification based on M-LWE and M-SIS. In practice, we achieve the shortest lattice-based ring signature, named DualRing-LB, when the ring size is between 4 and 2000. DualRing-LB is also 5x faster in signing and verification than the fastest lattice-based scheme by Esgin et al. (CRYPTO'19).
Considering the DL-based setting by using Schnorr identification scheme, our DualRing structure allows the signature size to be compressed into logarithmic size via an argument of knowledge system such as Bulletproofs. We further improve on the Bulletproofs argument system to eliminate about half of the computation while maintaining the same proof size. We call this Sum Argument and it can be of independent interest. This DL-based construction, named DualRing-EC, using Schnorr identification with Sum Argument has the shortest ring signature size in the literature without using trusted setup.
Considering the lattice-based setting, we instantiate DualRing by a canonical identification based on M-LWE and M-SIS. In practice, we achieve the shortest lattice-based ring signature, named DualRing-LB, when the ring size is between 4 and 2000. DualRing-LB is also 5x faster in signing and verification than the fastest lattice-based scheme by Esgin et al. (CRYPTO'19).
Hyunjun Kim, Kyungbae Jang, Gyeongju Song, Minjoo Sim, Siwoo Eum, Hyunji Kim, Hyeokdong Kwon, Wai-Kong Lee, Hwajeong Seo
The SPEEDY block cipher suite announced at CHES 2021 shows excellent hardware performance.
However, SPEEDY was not designed to be efficient in software implementations.
SPEEDY's 6-bit sbox and bit permutation operations generally do not work efficiently in software.
We implemented SPEEDY block cipher by applying the implementation technique of bit slicing. As an implementation technique of bit slicing, SPEEDY can be operated in software very efficiently and can be applied in microcontroller.
By calculating the round key in advance, the performance on ARM Cortex-M3 for SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192 are 65.7, 75.25, and 85.16 clock cycles per byte (i.e. cpb), respectively.
It showed better performance than AES-128 constant-time implementation and GIFT constant-time implementation in the same platform.
Through this, we conclude that SPEEDY can show good performance on embedded environments.
Gyeongju Song, Kyungbae Jang, Hyunjun Kim, Siwoo Eum, Minjoo Sim, Hyunji Kim, Wai-Kong Lee, Hwajeong Seo
With the advent of quantum computers, revisiting the security of cryptography has been an active research area in recent years.
In this paper, we estimate the cost of applying Grover's algorithm to SPEEDY block cipher. SPEEDY is a family of ultra-low-latency block ciphers presented in CHES'21. It is ensured that the key search equipped with Grover's algorithm reduces the $n$-bit security of the block cipher to $\frac{n}{2}$-bit. The issue is how many quantum resources are required for Grover's algorithm to work. NIST estimates the post-quantum security strength for symmetric key cryptography as the cost of Grover key search algorithm. SPEEDY provides 128-bit security or 192-bit security depending on the number of rounds. Based on our estimated cost, we present that increasing the number of rounds is insufficient to satisfy the security against attacks on quantum computers. To the best of our knowledge, this is the first implementation of SPEEDY as a quantum circuit.
Yaobin Shen; Lei Wang; Dawu Gu
LightMAC is a lightweight MAC designed by Luykx et al. and recently standardized by ISO/IEC. In this paper, we refine LightMAC and suggest two simple variants called LedMAC1 and LedMAC2. Compared to LightMAC, our first scheme LedMAC1 avoids unnecessary padding without sacrificing the security. Our second scheme LedMAC2 further reduces the number of keys from two to one, and achieves the same level security as that of LightMAC.
Lior Rotem
We study the problem of batch verification for verifiable delay functions (VDFs), focusing on proofs of correct exponentiation (PoCE), which underlie recent VDF constructions. We show how to compile any PoCE into a batch PoCE, offering significant savings in both communication and verification time. Concretely, given any PoCE with communication complexity $c$, verification time $t$ and soundness error $\delta$, and any pseudorandom function with key length ${\sf k}_{\sf prf}$ and evaluation time $ t_{\sf prf}$, we construct:
-- A batch PoCE for verifying $n$ instances with communication complexity $m\cdot c +{\sf k}_{\sf prf}$, verification time $m\cdot t + n\cdot m\cdot O(t_{\sf op} + t_{\sf prf})$ and soundness error $\delta + 2^{-m}$, where $\lambda$ is the security parameter, $m$ is an adjustable parameter that can take any integer value, and $t_{\sf op}$ is the time required to evaluate the group operation in the underlying group. This should be contrasted with the naive approach, in which the communication complexity and verification time are $n \cdot c$ and $n \cdot t$, respectively. The soundness of this compiler relies only on the soundness of the underlying PoCE and the existence of one-way functions.
-- An improved batch PoCE based on the low order assumption. For verifying $n$ instances, the batch PoCE requires communication complexity $c +{\sf k}_{\sf prf}$ and verification time $t + n\cdot (t_{\sf prf} + \log(s)\cdot O(t_{\sf op}))$, and has soundness error $\delta + 1/s$. The parameter $s$ can take any integer value, as long as it is hard to find group elements of order less than $s$ in the underlying group. We discuss instantiations in which $s$ can be exponentially large in the security parameter $\lambda$.
If the underlying PoCE is constant round and public coin (as is the case for existing protocols), then so are all of our batch PoCEs. This implies that they can be made non-interactive using the Fiat-Shamir transform.
Additionally, for RSA groups with moduli which are the products of two safe primes, we show how to efficiently verify that certain elements are not of order $2$. This protocol, together with the second compiler above and any (single-instance) PoCE in these groups, yields an efficient batch PoCE in safe RSA groups. To complete the picture, we also show how to extend Pietrzak's protocol (which is statistically sound in the group $QR_N^+$ when $N$ is the product of two safe primes) to obtain a statistically-sound PoCE in safe RSA groups.
-- A batch PoCE for verifying $n$ instances with communication complexity $m\cdot c +{\sf k}_{\sf prf}$, verification time $m\cdot t + n\cdot m\cdot O(t_{\sf op} + t_{\sf prf})$ and soundness error $\delta + 2^{-m}$, where $\lambda$ is the security parameter, $m$ is an adjustable parameter that can take any integer value, and $t_{\sf op}$ is the time required to evaluate the group operation in the underlying group. This should be contrasted with the naive approach, in which the communication complexity and verification time are $n \cdot c$ and $n \cdot t$, respectively. The soundness of this compiler relies only on the soundness of the underlying PoCE and the existence of one-way functions.
-- An improved batch PoCE based on the low order assumption. For verifying $n$ instances, the batch PoCE requires communication complexity $c +{\sf k}_{\sf prf}$ and verification time $t + n\cdot (t_{\sf prf} + \log(s)\cdot O(t_{\sf op}))$, and has soundness error $\delta + 1/s$. The parameter $s$ can take any integer value, as long as it is hard to find group elements of order less than $s$ in the underlying group. We discuss instantiations in which $s$ can be exponentially large in the security parameter $\lambda$.
If the underlying PoCE is constant round and public coin (as is the case for existing protocols), then so are all of our batch PoCEs. This implies that they can be made non-interactive using the Fiat-Shamir transform.
Additionally, for RSA groups with moduli which are the products of two safe primes, we show how to efficiently verify that certain elements are not of order $2$. This protocol, together with the second compiler above and any (single-instance) PoCE in these groups, yields an efficient batch PoCE in safe RSA groups. To complete the picture, we also show how to extend Pietrzak's protocol (which is statistically sound in the group $QR_N^+$ when $N$ is the product of two safe primes) to obtain a statistically-sound PoCE in safe RSA groups.
Benny Applebaum, Aarushi Goel
We introduce the notion of \emph{elementary MPC} reductions that allow us to securely compute a functionality $f$ by making a single call to a constant-degree ``non-cryptographic'' functionality $g$ without requiring any additional interaction. Roughly speaking, ``non-cryptographic'' means that $g$ does not make use of cryptographic primitives, though the parties can locally call such primitives.
Classical MPC results yield such elementary reductions in various cases including the setting of passive security with full corruption threshold $t<n$ (Yao, FOCS'86; Beaver, Micali, and Rogaway, STOC'90), the setting of full active security against a corrupted minority $t<n/2$ (Damg{\aa}rd and Ishai, Crypto'05), and, for $\NCone$ functionalities, even for the setting of full active (information-theoretic) security with full corruption threshold of $t<n$ (Ishai and Kushilevitz, FOCS'00). This leaves open the existence of an elementary reduction that achieves full active security in the dishonest majority setting for all efficiently computable functions.
Our main result shows that such a reduction is unlikely to exist. Specifically, the existence of a computationally secure elementary reduction that makes black-box use of a PRG and achieves a very weak form of partial fairness (e.g., that holds only when the first party is not corrupted) would allow us to realize any efficiently-computable function by a \emph{constant-round} protocol that achieves a non-trivial notion of information-theoretic passive security. The existence of the latter is a well-known 3-decade old open problem in information-theoretic cryptography (Beaver, Micali, and Rogaway, STOC'90).
On the positive side, we observe that this barrier can be bypassed under any of the following relaxations: (1) non-black-box use of a pseudorandom generator; (2) weaker security guarantees such as security with identifiable abort; or (3) an additional round of communication with the functionality $g$.
Classical MPC results yield such elementary reductions in various cases including the setting of passive security with full corruption threshold $t<n$ (Yao, FOCS'86; Beaver, Micali, and Rogaway, STOC'90), the setting of full active security against a corrupted minority $t<n/2$ (Damg{\aa}rd and Ishai, Crypto'05), and, for $\NCone$ functionalities, even for the setting of full active (information-theoretic) security with full corruption threshold of $t<n$ (Ishai and Kushilevitz, FOCS'00). This leaves open the existence of an elementary reduction that achieves full active security in the dishonest majority setting for all efficiently computable functions.
Our main result shows that such a reduction is unlikely to exist. Specifically, the existence of a computationally secure elementary reduction that makes black-box use of a PRG and achieves a very weak form of partial fairness (e.g., that holds only when the first party is not corrupted) would allow us to realize any efficiently-computable function by a \emph{constant-round} protocol that achieves a non-trivial notion of information-theoretic passive security. The existence of the latter is a well-known 3-decade old open problem in information-theoretic cryptography (Beaver, Micali, and Rogaway, STOC'90).
On the positive side, we observe that this barrier can be bypassed under any of the following relaxations: (1) non-black-box use of a pseudorandom generator; (2) weaker security guarantees such as security with identifiable abort; or (3) an additional round of communication with the functionality $g$.
Lior Rotem, Gil Segev
Vector commitments (VCs), enabling to commit to a vector and locally reveal any of its entries, play a key role in a variety of both classic and recently-evolving applications. However, security notions for VCs have so far focused on passive attacks, and non-malleability notions considering active attacks have not been explored. Moreover, existing frameworks that may enable to capture the non-malleability of VCs seem either too weak (non-malleable non-interactive commitments that do not account for the security implications of local openings) or too strong (non-malleable zero-knowledge sets that support both membership and non-membership proofs).
We put forward a rigorous framework capturing the non-malleability of VCs, striking a careful balance between the existing weaker and stronger frameworks: We strengthen the framework of non-malleable non-interactive commitments by considering attackers that may be exposed to local openings, and we relax the framework of non-malleable zero-knowledge sets by focusing on membership proofs. In addition, we strengthen both frameworks by supporting (inherently-private) updates to entries of committed vectors, and discuss the benefits of non-malleable VCs in the context of both UTXO-based and account-based stateless blockchains, and in the context of simultaneous multi-round auctions (that have been adopted by the US Federal Communications Commission as the standard auction format for selling spectrum ranges).
Within our framework we present a direct approach for constructing non-malleable VCs whose efficiency essentially matches that of the existing standard VCs. Specifically, we show that any VC can be transformed into a non-malleable one, relying on a new primitive that we put forth. Our new primitive, locally-equivocable commitments with all-but-one binding, is evidently both conceptually and technically simpler compared to multi-trapdoor mercurial trapdoor commitments (the main building block underlying existing non-malleable zero-knowledge sets), and admits more efficient instantiations based on the same number-theoretic assumptions.
We put forward a rigorous framework capturing the non-malleability of VCs, striking a careful balance between the existing weaker and stronger frameworks: We strengthen the framework of non-malleable non-interactive commitments by considering attackers that may be exposed to local openings, and we relax the framework of non-malleable zero-knowledge sets by focusing on membership proofs. In addition, we strengthen both frameworks by supporting (inherently-private) updates to entries of committed vectors, and discuss the benefits of non-malleable VCs in the context of both UTXO-based and account-based stateless blockchains, and in the context of simultaneous multi-round auctions (that have been adopted by the US Federal Communications Commission as the standard auction format for selling spectrum ranges).
Within our framework we present a direct approach for constructing non-malleable VCs whose efficiency essentially matches that of the existing standard VCs. Specifically, we show that any VC can be transformed into a non-malleable one, relying on a new primitive that we put forth. Our new primitive, locally-equivocable commitments with all-but-one binding, is evidently both conceptually and technically simpler compared to multi-trapdoor mercurial trapdoor commitments (the main building block underlying existing non-malleable zero-knowledge sets), and admits more efficient instantiations based on the same number-theoretic assumptions.
Ittai Abraham, Gilad Asharov, Avishay Yanai
Secure computation enables $n$ mutually distrustful parties to compute a function over their private inputs jointly. In 1988 Ben-Or, Goldwasser, and Wigderson (BGW) demonstrated that any function can be computed with perfect security in the presence of a malicious adversary corrupting at most $t< n/3$ parties.
After more than 30 years, protocols with perfect malicious security, with round complexity proportional to the circuit's depth, still require sharing a total of $O(n^2)$ values per multiplication.
In contrast, only $O(n)$ values need to be shared per multiplication to achieve semi-honest security. Indeed sharing $\Omega(n)$ values for a single multiplication seems to be the natural barrier for polynomial secret sharing-based multiplication.
In this paper, we close this gap by constructing a new secure computation protocol with perfect, optimal resilience and malicious security that incurs sharing of only $O(n)$ values per multiplication, thus, matching the semi-honest setting for protocols with round complexity that is proportional to the circuit depth. Our protocol requires a constant number of rounds per multiplication. Like BGW, it has an overall round complexity that is proportional only to the multiplicative depth of the circuit. Our improvement is obtained by a novel construction for {\em weak VSS for polynomials of degree-$2t$}, which incurs the same communication and round complexities as the state-of-the-art constructions for {\em VSS for polynomials of degree-$t$}.
Our second contribution is a method for reducing the communication complexity for any depth-1 sub-circuit to be proportional only to the size of the input and output (rather than the size of the circuit). This implies protocols with \emph{sublinear communication complexity} (in the size of the circuit) for perfectly secure computation for important functions like matrix multiplication.
In this paper, we close this gap by constructing a new secure computation protocol with perfect, optimal resilience and malicious security that incurs sharing of only $O(n)$ values per multiplication, thus, matching the semi-honest setting for protocols with round complexity that is proportional to the circuit depth. Our protocol requires a constant number of rounds per multiplication. Like BGW, it has an overall round complexity that is proportional only to the multiplicative depth of the circuit. Our improvement is obtained by a novel construction for {\em weak VSS for polynomials of degree-$2t$}, which incurs the same communication and round complexities as the state-of-the-art constructions for {\em VSS for polynomials of degree-$t$}.
Our second contribution is a method for reducing the communication complexity for any depth-1 sub-circuit to be proportional only to the size of the input and output (rather than the size of the circuit). This implies protocols with \emph{sublinear communication complexity} (in the size of the circuit) for perfectly secure computation for important functions like matrix multiplication.
Carlos Cid, John Petter Indrøy, Håvard Raddum
In this paper we propose FASTA, a stream cipher design optimised for implementation over popular fully homomorphic encryption schemes. A number of symmetric encryption ciphers have been recently proposed for FHE applications, e.g. the block cipher LowMC, and the stream ciphers Rasta (and variants), FLIP and Kreyvium. The main design criterion employed in these ciphers has typically been to minimise the multiplicative complexity of the algorithm. However, other aspects affecting their efficient evaluation over common FHE libraries are often overlooked, compromising their real-world performance. Whilst FASTA may also be considered as a variant of Rasta, it has its parameters and linear layer especially chosen to allow efficient implementation over the BGV scheme, particularly as implemented in the HElib library. This results in a speedup by a factor of 25 compared to the most efficient publicly available implementation of Rasta. FASTAs target is BGV, as implemented in HElib, however the design ideas introduced in the cipher could also be potentially employed to achieve improvements in the homomorphic evaluation in other popular FHE schemes/libraries. We do consider such alternatives in this paper (e.g. BFV and BGVrns, as implemented in SEAL and PALISADE), but argue that, unlike BGV in HElib, it is more challenging to make use of their parallelism in a Rasta-like stream cipher design.
Florette Martinez
We introduce lattice-based practical seed-recovery attacks against two efficient number-theoretic pseudo-random number generators: the fast knapsack generator and a family of combined multiple recursive generators. The fast knapsack generator was introduced in 2009 by Von Zur Gathen and Shparlinski. It generates pseudo-random numbers very efficiently with strong mathematical guarantees on their statistical
properties but its resistance to cryptanalysis was left open since 2009. The given attacks are surprisingly efficient when the truncated bits do not represent a too large proportion of the internal states. Their complexities do not strongly increase with the size of parameters, only with the proportion of discarded bits.
A multiple recursive generator is a pseudo-random number generator based on a constant-recursive sequence. A combined multiple recursive generator is a pseudo-random number generator based on combining two or more multiple recursive generators. LÉcuyer presented the general
construction in 1996 and a popular instantiation deemed MRG32k3a in 1999. We use algebraic relations of both pseudo-random generators with underlying algebraic generators to show that they are cryptographically
insecure. We provide a theoretical analysis as well as efficient implementations.
Emmanouil Doulgerakis, Thijs Laarhoven, Benne de Weger
The main idea behind lattice sieving algorithms is to reduce a sufficiently large number of lattice vectors with each other so that a set of short enough vectors is obtained, including a basis of the lattice. It is therefore natural to study vectors which cannot be reduced. In this work we give a concrete definition of an irreducible vector and study the properties of the set of all such vectors. We show that the set of irreducible vectors is a subset of the set of relevant vectors and study its properties. For extremal lattices this set may contain as many as $2^n$ vectors, which leads us to define the notion of a complete system of irreducible vectors, whose size can be upper-bounded by the kissing number. We study properties of this set and observe a close relation to heuristic sieving algorithms. Finally we briefly examine the use of this set in the study of lattice problems such as SVP, SIVP and CVPP. The introduced notions, as well as various results derived along the way, may provide further insights into lattice algorithms and motivate new research into understanding these algorithms better.
Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy, Samuel Pagliarini
This paper presents a design space exploration for SABER, one of the finalists in NISTs quantum-resistant public-key cryptographic standardization effort. Our design space exploration targets a 65nmASIC platform and has resulted in the evaluation of 6 different architectures. Our exploration is initiated by setting a baseline architecture which is ported from FPGA. In order to improve the clock frequency (the primary goal in our exploration), we have employed several optimizations: (i) use of compiled memories in a smart synthesis fashion, (ii) pipelining, and (iii) logic sharing between SABER building blocks. The most optimized architecture utilizes four register files, achieves a remarkable clock frequency of 1𝐺𝐻𝑧 while only requiring an area of 0.314𝑚𝑚2. Moreover, physical synthesis is carried out for this architecture and a tapeout-ready layout is presented. The estimated dynamic power consumption of the high-frequency architecture is approximately 184mW for key generation and 187mW for encapsulation or decapsulation operations. These results strongly suggest that our optimized accelerator architecture is well suited for high-speed cryptographic applications.
Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, Jun Pang
Belenios is an online voting system that provides a strong notion of election verifiability, where no single party has to be trusted, and security holds as soon as either the voting registrar or the voting server is honest. It was formally proved to be secure, making the assumption that no further ballots are cast on the bulletin board after voters verified their ballots. In practice, however, revoting is allowed and voters can verify their ballots anytime. This gap between formal proofs and use in practice leaves open space for attacks, as has been shown recently. In this paper we make two simple additions to Belenios and we formally prove that the new version satisfies the expected verifiability properties. Our proofs are automatically performed with the Tamarin prover, under the assumption that voters are allowed to vote at most four times.
Fuyuki Kitagawa, Ryo Nishimaki
Key dependent message (KDM) security is a security notion that guarantees confidentiality of communication even if secret keys are encrypted.
KDM security has found a number of applications in practical situations such as hard-disk encryption systems, anonymous credentials, and bootstrapping of fully homomorphic encryptions. Recently, it also found an application in quantum delegation protocols as shown by Zhang (TCC 2019).
In this work, we investigate the KDM security of existing practical public-key encryption (PKE) schemes proposed in the quantum random oracle model (QROM). Concretely, we study a PKE scheme whose KEM is constructed by using Fujisaki-Okamoto (FO) transformations in the QROM. FO transformations are applied to IND-CPA secure PKE schemes and yield IND-CCA secure key encapsulation mechanisms (KEM). Then, we show the following results.
- We can reduce the KDM-CPA security in the QROM of a PKE scheme whose KEM is derived from any of the FO transformations proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use one-time-pad (OTP) as DEM to convert KEM into PKE.
- We can reduce the KDM-CCA security in the QROM of a PKE scheme whose KEM is derived from a single variant of the FO transformation proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use OTP-then-MAC construction as DEM to convert KEM into PKE. Also, we require a mild injectivity assumption for the underlying IND-CPA secure PKE scheme.
In order to avoid square root security loss, we use a double-sided one-way to hiding (O2H) lemma proposed by Kuchta et al. (EUROCRYPT 2020). In the context of KDM security, there is a technical hurdle for using double-sided O2H lemma due to the circularity issue. Our main technical contribution is to overcome the hurdle.
In this work, we investigate the KDM security of existing practical public-key encryption (PKE) schemes proposed in the quantum random oracle model (QROM). Concretely, we study a PKE scheme whose KEM is constructed by using Fujisaki-Okamoto (FO) transformations in the QROM. FO transformations are applied to IND-CPA secure PKE schemes and yield IND-CCA secure key encapsulation mechanisms (KEM). Then, we show the following results.
- We can reduce the KDM-CPA security in the QROM of a PKE scheme whose KEM is derived from any of the FO transformations proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use one-time-pad (OTP) as DEM to convert KEM into PKE.
- We can reduce the KDM-CCA security in the QROM of a PKE scheme whose KEM is derived from a single variant of the FO transformation proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of the underlying PKE scheme, without square root security loss. For this result, we use OTP-then-MAC construction as DEM to convert KEM into PKE. Also, we require a mild injectivity assumption for the underlying IND-CPA secure PKE scheme.
In order to avoid square root security loss, we use a double-sided one-way to hiding (O2H) lemma proposed by Kuchta et al. (EUROCRYPT 2020). In the context of KDM security, there is a technical hurdle for using double-sided O2H lemma due to the circularity issue. Our main technical contribution is to overcome the hurdle.
Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu, Arkady Yerukhimovich
Fully homomorphic encryption (FHE) enables a simple, attractive
framework for secure search. Compared to other secure search systems,
no costly setup procedure is necessary; it is sufficient for the client
merely to upload the encrypted database to the server. Confidentiality
is provided because the server works only on the encrypted query and
records. While the search functionality is enabled by the full
homomorphism of the encryption scheme.
For this reason, researchers have been paying increasing attention to this problem. Since Akavia et al. (CCS 2018) presented a framework for secure search on FHE encrypted data and gave a working implementation called SPiRiT, several more efficient realizations have been proposed.
In this paper, we identify the main bottlenecks of this framework and show how to significantly improve the performance of FHE-base secure search. In particular,
1. To retrieve $\ell$ matching items, the existing framework needs to repeat the protocol $\ell$ times sequentially. In our new framework, all matching items are retrieved in parallel in a single protocol execution.
2. The most recent work by Wren et al. (CCS 2020) requires $O(n)$ multiplications to compute the first matching index. Our solution requires no homomorphic multiplication, instead using only additions and scalar multiplications to encode all matching indices.
3. Our implementation and experiments show that to fetch 16 matching records, our system gives an 1800X speed-up over the state of the art in fetching the query results resulting in a 26X speed-up for the full search functionality.
For this reason, researchers have been paying increasing attention to this problem. Since Akavia et al. (CCS 2018) presented a framework for secure search on FHE encrypted data and gave a working implementation called SPiRiT, several more efficient realizations have been proposed.
In this paper, we identify the main bottlenecks of this framework and show how to significantly improve the performance of FHE-base secure search. In particular,
1. To retrieve $\ell$ matching items, the existing framework needs to repeat the protocol $\ell$ times sequentially. In our new framework, all matching items are retrieved in parallel in a single protocol execution.
2. The most recent work by Wren et al. (CCS 2020) requires $O(n)$ multiplications to compute the first matching index. Our solution requires no homomorphic multiplication, instead using only additions and scalar multiplications to encode all matching indices.
3. Our implementation and experiments show that to fetch 16 matching records, our system gives an 1800X speed-up over the state of the art in fetching the query results resulting in a 26X speed-up for the full search functionality.
Gaëtan Leurent, Clara Pernot, André Schrottenloher
Simon and Simeck are two lightweight block ciphers with a simple round function using only word rotations and a bit-wise AND operation. Previous work has shown a strong clustering effect for differential and linear cryptanalysis, due to the existence of many trails with the same inputs and outputs.
In this paper, we explore this clustering effect by exhibiting a class of high probability differential and linear trails where the active bits stay in a fixed window of $w$ bits. Instead of enumerating a set of good trails contributing to a differential or a linear approximation, we compute the probability distribution over this space, including all trails in the class.
This results in stronger distinguishers than previously proposed, and we describe key recovery attacks against Simon and Simeck improving the previous results by up to 7 rounds. In particular, we obtain an attack against 42-round Simeck64, leaving only two rounds of security margin, and an attack against 45-round Simon96/144, reducing the security margin from 16 rounds to 9 rounds.
Mingyu Liang, Ioanna Karantaidou, Foteini Baldimtsi, Dov Gordon, Mayank Varia
We propose a new theoretical approach for building anonymous mixing mechanisms for cryptocurrencies. Rather than requiring a fully uniform permutation during mixing, we relax the requirement, insisting only that neighboring permutations are similarly likely. This is defined formally by borrowing from the definition of differential privacy. This relaxed privacy definition allows us to greatly reduce the amount of interaction and computation in the mixing protocol. Our construction achieves $O(n \cdot polylog(n))$ computation time for mixing $n$ addresses, whereas all other mixing schemes require $O(n^2)$ total computation across all parties. Additionally, we support a smooth tolerance of fail-stop adversaries and do not require any trusted setup. We analyze the security of our generic protocol under the UC framework, and under a stand-alone, game-based definition. We finally describe an instantiation using ring signatures and confidential transactions.
Salil Vadhan, Tianhao Wang
We initiate a study of the composition properties of interactive differentially private mechanisms. An interactive differentially private mechanism is an algorithm that allows an analyst to adaptively ask queries about a sensitive dataset, with the property that an adversarial analyst's view of the interaction is approximately the same regardless of whether or not any individual's data is in the dataset. Previous studies of composition of differential privacy have focused on non-interactive algorithms, but interactive mechanisms are needed to capture many of the intended applications of differential privacy and a number of the important differentially private primitives.
We focus on concurrent composition, where an adversary can arbitrarily interleave its queries to several differentially private mechanisms, which may be feasible when differentially private query systems are deployed in practice. We prove that when the interactive mechanisms being composed are pure differentially private, their concurrent composition achieves privacy parameters (with respect to pure or approximate differential privacy) that match the (optimal) composition theorem for noninteractive differential privacy. We also prove a composition theorem for interactive mechanisms that satisfy approximate differential privacy. That bound is weaker than even the basic (suboptimal) composition theorem for noninteractive differential privacy, and we leave closing the gap as a direction for future research, along with understanding concurrent composition for other variants of differential privacy.
We focus on concurrent composition, where an adversary can arbitrarily interleave its queries to several differentially private mechanisms, which may be feasible when differentially private query systems are deployed in practice. We prove that when the interactive mechanisms being composed are pure differentially private, their concurrent composition achieves privacy parameters (with respect to pure or approximate differential privacy) that match the (optimal) composition theorem for noninteractive differential privacy. We also prove a composition theorem for interactive mechanisms that satisfy approximate differential privacy. That bound is weaker than even the basic (suboptimal) composition theorem for noninteractive differential privacy, and we leave closing the gap as a direction for future research, along with understanding concurrent composition for other variants of differential privacy.
Miti Mazmudar, Stan Gurtler, Ian Goldberg
Peer-to-peer distributed hash tables (DHTs) rely on volunteers to contribute their computational resources, such as disk space and bandwidth. In order to incentivize these node operators of privacy-preserving DHTs, it is important to prevent exposing them to the data that is stored on the DHT and/or queried for. Vasserman et al.'s CROPS aimed at providing plausible deniability to server nodes by encrypting stored content. However, node operators are still exposed to the contents of queries. We provide an architecture that uses information-theoretic private information retrieval to efficiently render a server node incapable of determining what content was retrieved in a given request by a user. We illustrate an integration of our architecture with the aforementioned system. Finally, we simulate our system and show that it has a small communication and performance overhead over other systems without this privacy guarantee, and smaller overheads with respect to the closest related work.