IACR News
Here you can see all recent updates to the IACR webpage. These updates are also available:
06 October 2021
Microsoft Research, Redmond, WA
Job PostingDigital identities are foundational to the modern web and to the many services enabled by various cloud providers. The Cryptography and Privacy Research Group at Microsoft Research, Redmond, is creating new privacy and transparency technologies for the digital identity ecosystem, with the goal of giving users more control over their identity and visibility into its usage. We are looking for a research intern for the spring of 2022 to work with us on privacy-preserving and auditable data structures and applications to future digital identity ecosystems.
More information and application at https://careers.microsoft.com/us/en/job/1177611/Research-Intern-Privacy-and-Cryptography
Closing date for applications:
Contact: Kim Laine (kim.laine@microsoft.com) or Esha Ghosh (esha.ghosh@microsoft.com)
The University of Manchester, Department of Computer Science, Manchester, UK
Job PostingWe are looking for a Research Associate (PostDoc) in Secure & Privacy-preserving AI Models to join our ambitious EnnCore (https://enncore.github.io/) project.
You will enjoy designing, developing and evaluating novel AI models (deep neural networks) that are privacy-preserving and robust against attacks. The project will involve the continuous interaction with experts in explainable AI and formal software verification. You will also have the opportunity to build use cases and to collaborate with domain experts in areas such as cancer research and energy trading. You will design, develop and evaluate new models in the context of their accuracy, privacy-protection and robustness. This position may include research on a diverse set of techniques such as federated learning, homomorphic encryption, multiparty computation and adversarial methods. The post is initially for one year, with the possibility for extensions.
You should have a PhD or equivalent in Computer Science or a closely related field together with a track record of international publications in applied machine learning or secure computation. Examples of fields of interests are:
(1) Federated Learning
(2) Homomorphic Encryption
(3) Secure Multiparty Computation
(4) Differential Privacy
(5) Safety Mechanisms in AI Systems
(6) Adversarial Methods
Closing date for applications:
Contact: Dr Mustafa A. Mustafa
mustafa.mustafa@manchester.ac.uk
More information: https://www.jobs.manchester.ac.uk/displayjob.aspx?jobid=21038
Heliax, Anoma Protocol, Remote
Job PostingClosing date for applications:
Contact: jobs@heliax.dev
More information: https://heliax.dev/jobs/zero-knowledge-cryptographer-protocol-developer/
New Jersey Institute of Technology (NJIT), USA
Job PostingDetails: NJIT is a Rank 1 Research University, situated in New York Metropolitan area, and is about 7 miles away from the beautiful New York City. New York Metropolitan area is a key part of the US and is the hub of several major tech and research companies. The qualified candidates will have opportunities for research internships and joint projects with lead-industrial companies.
The position is looking for highly motivated graduate as well as undergraduate students to explore, design, and implement algorithms for databases, secure computing, IoT, blockchain, and machine learning. Topics are as follows:
1. GDPR compliance trustworthy database systems
a. The implication of privacy laws in database systems
b. Design of new modules for GDPR compliance secure databases
2. Trustworthy data-driven systems
a. Application of blockchains in data-driven systems
b. Applications of security techniques in data-driven system pipeline
3. Scalable and trustworthy database processing
a. Use of encryption and secret-sharing techniques
b. Use of secure hardware
Outcome: The work will expose the student to novel data management algorithms, programming with secure hardware (Intel SGX), cluster computing frameworks such as MapReduce and Spark, and the basics of secure computing using cryptographic techniques.
Requirements:
1. You will need to be highly enthusiastic, learner, and also be interested in coding/prototyping algorithms and systems
2. Adequate knowledge of algorithms, programming, and relational database systems
3. Knowledge of Java, SQL, and C/C++
4. You must be an Undergraduate/Master student in computer science or a related field
Closing date for applications:
Contact: Shantanu Sharma shantanu[DOT]sharma[AT]njit[DOT]edu Please send your CV and other information (e.g., GitHub account, sample projects, etc.) to: Shantanu Sharma
More information: https://web.njit.edu/~ss797/
University of Stuttgart, Institute of Information Security
Job Postingfully-funded Postdoc position in formal verification.
The successful candidate is expected to work on tool-supported formal verification of security-critical systems and security protocols.
The position is available immediately with an internationally competitive salary (German public salary scale TV-L E13 or TV-L E14, depending on the candidate's qualification, ranging from about 4.600 Euro to 6.200 Euro monthly gross salary). The appointment period follows the German Wissenschaftszeitvertragsgesetz (WissZeitVg), ranging from one year to up to six years.
The Institute of Information Security offers a creative international environment for top-level international research in Germany's high-tech region.
The successful candidate should have a Ph.D. (or should be very close to completion thereof) in Computer Science, Mathematics, Information Security, or a related field. We value strong analytical skills and
- solid knowledge of logic, proofs and/or formal verification techniques (Theorem Proving, Type Checking, etc.),
- solid programming experience.
Knowledge in security is not required, but a plus. Knowledge of German is not required.
See https://www.sec.uni-stuttgart.de/institute/job-openings/ for details of how to apply.
The deadline for applications is
October 31st, 2021.
Late applications will be considered until the position is filled.Closing date for applications:
Contact: Prof. Dr. Ralf Küsters
University of Stuttgart
Institute of Information Security
ralf.kuesters@sec.uni-stuttgart.de
More information: https://www.sec.uni-stuttgart.de/institute/job-openings/
05 October 2021
Thomas Agrikola, Geoffroy Couteau, Sven Maier
ePrint ReportWe initiate the theoretical study of this question, and derive negative and positive results on the existence of such a protocol. We refute the feasibility of asymptotically secure anonymous transfer, where the message will be received with overwhelming probability while at the same time the identity of the sender remains hidden with overwhelming probability. On the other hand, resorting to fine-grained cryptography, we provide a heuristic instantiation (assuming ideal obfuscation) which guarantees that the message will be correctly received with overwhelming probability and the identity of the sender leaks with vanishing probability. Our results provide strong foundations for the study of the possibility of anonymous communications through authenticated channels, an intriguing goal which we believe to be of fundamental interest.
Eik List
ePrint ReportLuk Bettale, Simon Montoya, Guénaël Renault
ePrint ReportDongxi Liu
ePrint Report6268 = 57240 * x + (1248 * x + (9 * x mod 16) mod 2053) mod 65699
In this example, the eMLE problem is to find x from the above equation. eMLE in this paper has the same number of variables and equations. The hardness of eMLE problem lies in its layered structure. Without knowing the eMLE value of lower layer (i.e., the layer with modulus 2053), the top layer (i.e., the layer with modulus 65699) has many candidate solutions; the adversary has to search the solution space for a few valid ones. A lower-bound for the number of searches has been proven in the paper, together with the expected number of valid solutions. The hardness of eMLE can be increased by adding more layers, without changing the number of variables and equations; no existing NP-complete problems have this feature. Over the hardness of eMLE, a post-quantum signature scheme, eMLE-Sig, is constructed. Compared with all existing signature schemes (conventional and post-quantum), eMLE-Sig might be the simplest to understand, analyze, instantiate, and implement. At the security level above 128 bits, five configurations are provided; all of them have keys and signatures smaller than RSA keys and signatures (above 380 bytes) at the 128-bit security level. The smallest configuration is with two variables and three layers, having 84.1/52.2 bytes for private/public key and 168.4 bytes for signatures.
Zeyu Liu, Daniele Micciancio, Yuriy Polyakov
ePrint ReportDakshita Khurana, Akshayaram Srinivasan
ePrint ReportIn this work, we investigate whether computational extractors in the CRS model be applied to more challenging environments. Specifically, we study network extractor protocols (Kalai et al., FOCS 2008) and extractors for adversarial sources (Chattopadhyay et al., STOC 2020) in the CRS model. We observe that these settings require extractors that work well for balanced sources, making the GKK results inapplicable. We remedy this situation by obtaining the following results, all of which are in the CRS model and assume the sub-exponential hardness of DDH.
- We obtain ``optimal'' computational two-source and non-malleable extractors for balanced sources: requiring both sources to have only poly-logarithmic min-entropy, and achieving negligible error. To obtain this result, we perform a tighter and arguably simpler analysis of the GKK extractor. - We obtain a single-round network extractor protocol for poly-logarithmic min-entropy sources that tolerates an optimal number of adversarial corruptions. Prior work in the information-theoretic setting required sources with high min-entropy rates, and in the computational setting had round complexity that grew with the number of parties, required sources with linear min-entropy, and relied on exponential hardness (albeit without a CRS). - We obtain an ``optimal'' {\em adversarial source extractor} for poly-logarithmic min-entropy sources, where the number of honest sources is only 2 and each corrupted source can depend on either one of the honest sources. Prior work in the information-theoretic setting had to assume a large number of honest sources.
Ilia Iliashenko, Christophe Nègre, Vincent Zucca
ePrint ReportMore specifically we give several examples of unary functions: "modulo", "is power of $b$" and "Hamming weight" and "Mod2'" whose homomorphic evaluation complexity over $\mathbb{F}_p$ can be reduced from the generic bound $\sqrt{2p} + \mathcal{O}(\log(p))$ homomorphic multiplications, to $\sqrt{p} + \mathcal{O}(\log(p))$, $\mathcal{O}(\log (p))$, $\mathcal{O}(\sqrt{p/\log (p)})$ and $\mathcal{O}(\sqrt{p/(\log (p))})$ respectively. Additionally we provide a proof of a recent claim regarding the structure of the polynomial interpolation of the "less-than" bivariate function which confirms that this function can be evaluated in $2p-6$ homomorphic multiplications instead of $3p-5$ over $\mathbb{F}_p$ for $p\geq 5$.
Aayush Jain, Huijia Lin, Amit Sahai
ePrint Report{\bf Theorem}(Informal): Assume sub-exponential security of the following assumptions:
- the Learning Parity with Noise ($\mathsf{LPN}$) assumption over general prime fields $\mathbb{F}_p$ with polynomially many $\mathsf{LPN}$ samples and error rate $1/k^\delta$, where $k$ is the dimension of the $\mathsf{LPN}$ secret, and $\delta>0$ is any constant;
- the existence of a Boolean Pseudo-Random Generator ($\mathsf{PRG}$) in $\mathsf{NC}^0$ with stretch $n^{1+\tau}$, where $n$ is the length of the $\mathsf{PRG}$ seed, and $\tau>0$ is any constant;
- the Decision Linear ($\mathsf{DLIN}$) assumption on symmetric bilinear groups of prime order.
Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists. Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion resistant public-key functional encryption for all polynomial-size circuits.}
This removes the reliance on the Learning With Errors (LWE) assumption from the recent work of [Jain, Lin, Sahai STOC'21]. As a consequence, we obtain the first fully homomorphic encryption scheme that does not rely on any lattice-based hardness assumption. Our techniques feature a new notion of randomized encoding called Preprocessing Randomized Encoding (PRE) that, essentially, can be computed in the exponent of pairing groups. When combined with other new techniques, PRE gives a much more streamlined construction of $\iO$ while still maintaining reliance only on well-studied assumptions.
Thomas Pornin
ePrint ReportLéo Ducas, Wessel van Woerden
ePrint ReportThis idea has never worked out very well for lattices: ad-hoc approaches have been proposed, but they have been subject to ad-hoc attacks, using tricks beyond lattice reduction algorithms. On the other hand the framework offered by the Short Integer Solution (SIS) and Learning With Errors (LWE) problems, while convenient and well founded, remains frustrating from a coding perspective: the underlying decoding algorithms are rather trivial, with poor decoding performance.
In this work, we provide generic realizations of this natural idea (independently of the chosen remarkable lattice) by basing cryptography on the lattice isomorphism problem (LIP). More specifically, we provide:
- a worst-case to average-case reduction for search-LIP and distinguish-LIP within an isomorphism class, by extending techniques of Haviv and Regev (SODA 2014). - a zero-knowledge proof of knowledge (ZKPoK) of an isomorphism. This implies an identification scheme based on search-LIP. - a key encapsulation mechanism (KEM) scheme and a hash-then-sign signature scheme, both based on distinguish-LIP.
The purpose of this approach is for remarkable lattices to improve the security and performance of lattice-based cryptography. For example, decoding within poly-logarithmic factor from Minkowski's bound in a remarkable lattice would lead to a KEM resisting lattice attacks down to poly-logarithmic approximation factor, provided that the dual lattice is also close to Minkowski's bound. Recent works have indeed reached such decoders for certain lattices (Chor-Rivest, Barnes-Sloan), but these do not perfectly fit our need as their duals have poor minimal distance.
George Teseleanu
ePrint ReportJens Groth, Victor Shoup
ePrint ReportIn this paper, we provide a thorough analysis of these variations, both in isolation and in combination. Our analysis is in the generic group model (GGM). Importantly, we do not modify ECDSA or weaken the standard notion of security in any way. Of independent interest, we also present a version of the GGM that is specific to elliptic curves. This EC-GGM better models some of the idiosyncrasies (such as the conversion function and malleability) of ECDSA. In addition to this analysis, we report security weaknesses in these variations that apparently have not been previously reported. For example, we show that when both variations are combined, there is a cube-root attack on ECDSA, which is much faster than the best known, square-root attack on plain ECDSA. We also present two mitigations against these weaknesses: re-randomized presignatures and homogeneous key derivation. Each of these mitigations is very lightweight, and when used in combination, the security is essentially the same as that of plain ECDSA (in the EC-GGM).