International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

30 October 2022

Marcio Barbado Junior
ePrint Report ePrint Report
Quantum computing threatens classical cryptography, leading to the search for stronger alternatives. The cryptographic approach based on lattices is considered as a viable option. Schemes with that approach use Gaussian sampling, a design which brings along two concerns: efficiency and information leakage. This work addresses those concerns in the RLWE formulation, for digital signatures. Efficiency mitigation uses the central limit theorem, and the Walsh–Hadamard transform, whereas the information leakage risk is reduced via isochronous implementation. Up to \( 2^{23} \) samples are queried, and the results are compared against those of a cumulative distribution table sampler. Statistical metrics show the suitability of the presented sampler in a number of contexts.
Expand
Vasyl Ustimenko
ePrint Report ePrint Report
For arbitrary finite field F_q, q > 2 we prove that known qregular bipartite algebraic graphs A(n; q) existence on 2q^n vertices have girth 2n or 2n + 2. Similar result is formulated for more general graphs A(n; K) defined over general commutative integrity ring K. The impact of these results on Extremal Graph Theory and graph based Algebraic Cryptography is discussed.
Expand
Thomas Kaeding
ePrint Report ePrint Report
We show that a Beaufort cipher is simultaneously both a quagmire 1 and a quagmire 2 cipher, which includes it in the set of quagmire 4 ciphers as well, albeit as a degenerate one. The Beaufort is one of a family of ciphers that share this property.
Expand
Jianwei Liu, Harshad Patil, Akhil Sai Peddireddy, Kevin Singh, Haifeng Sun, Huachuang Sun, Weikeng Chen
ePrint Report ePrint Report
In our survey of the various zk-EVM constructions, it becomes apparent that verifiable storage of the EVM state starts to be one of the dominating costs. This is not surprising because a big differentiator of EVM from UTXO is exactly the ability to carry states and, most importantly, their transitions, i.e., EVM is a **state** machine. In other words, to build an efficient zk-EVM, one must first build an efficient verifiable state. The common approach, which has been used in production, is a Merkle forest to authenticate the memory that would be randomly accessed within zk-SNARK, and optimize the verification of such memory accesses. In this note we describe a way to instantiate a Merkle tree with very few gates in TurboPlonk. We use customized gates in TurboPlonk to implement a SNARK-friendly hash function called Anemoi and its Jive k-to-1 compression mode of operation, both by Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov, and Danny Willems. We demonstrate that with $14$ gates ($\approx1$ gate per round in a 12-round Amenoi hash), one can verify a 3-to-1 compression in a 3-ary Merkle tree. Before this, prior implementations often would require hundreds of gates. We anticipate this technique to benefit a large number of applications built off zk-SNARK. Our implementation can be found in $\mathtt{noah}$, a library for modern privacy tokens: https://github.com/FindoraNetwork/noah
Expand
Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, Jiaheng Zhang
ePrint Report ePrint Report
We provide the first constructions of SNARGs for Batch-NP and P based solely on the sub-exponential Decisional Diffie Hellman (DDH) assumption. Our schemes achieve poly-logarithmic proof sizes.

Central to our results and of independent interest is a new construction of correlation-intractable hash functions for ``small input'' product relations verifiable in $\mathsf{TC}^0$, based on sub-exponential DDH.
Expand
Zachary A Kissel
ePrint Report ePrint Report
In this work we make progress towards solving an open problem posed by Bilzhause et. al, to give constructions of redactable signature schemes that allow the signer to limit the possible redactions performed by a third party. A separate, but related notion, called controlled disclosure allows a redactor to limit future redactions. We look at two types of data, sets and linear data (data organized as a sequence). In the case of sets, we limit redactions using a policy modeled by a monotone circuit or any circuit depending on the size of the universe the set is drawn from. In the case of linear data, we give a linear construction from vector commitments that limits redactions using a policy modeled as a monotone circuit. Our constructions have the attractive feature that they are built using only blackbox techniques.
Expand

28 October 2022

Anna Lysyanskaya, Leah Namisa Rosenbloom
ePrint Report ePrint Report
Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) serve as a key building block in many important cryptographic constructions. Achieving universally composable NIZKPoK secure against adaptive corruptions was a long-standing open problem, recently solved by Canetti, Sarkar, and Wang (Asiacrypt'22). This sole known construction requires heavy cryptographic machinery such as correlation-intractable hash functions, and is not ready for use in practice. In this paper, we give constructions of adaptively secure universally composable NIZKPoK in the global random-oracle model; we consider both the programmable and the non-programmable versions of the model. For many practical NIZK proof systems, our constructions incur only a super-polylogarithmic slowdown factor compared to stand-alone security.
Expand
Zoltán Ádám Mann, Christian Weinert, Daphnee Chabal, Joppe W. Bos
ePrint Report ePrint Report
Neural networks (NNs) have become one of the most important tools for artificial intelligence (AI). Well-designed and trained NNs can perform inference (e.g., make decisions or predictions) on unseen inputs with high accuracy. Using NNs often involves sensitive data: depending on the specific use case, the input to the NN and/or the internals of the NN (e.g., the weights and biases) may be sensitive. Thus, there is a need for techniques for performing NN inference securely, ensuring that sensitive private data remains secret. This challenge belongs to the "privacy and data governance" dimension of trustworthy AI.

In the past few years, several approaches have been proposed for secure neural network inference. These approaches achieve better and better results in terms of efficiency, security, accuracy, and applicability, thus making big progress towards practical secure neural network inference. The proposed approaches make use of many different techniques, such as homomorphic encryption and secure multi-party computation. The aim of this survey paper is to give an overview of the main approaches proposed so far, their different properties, and the techniques used. In addition, remaining challenges towards large-scale deployments are identified.
Expand
Minglang Dong
ePrint Report ePrint Report
The privacy set intersection (PSI) protocol with the oblivious pseudorandom function (OPRF) as the core component is a crucial member of PSI family, and the most efficient PSI protocol at present also belongs to this category. Based on DDH assumption, Hash Diffie-Hellman (HashDH) PSI is one of the most classical PSI protocols. Benefiting by its low communication overhead, it still has tremendous research value today. The OPRF subprotocol at the bottom of classical DH-PSI protocol falls into the abstract blind-query-de-blinding OPRF paradigm, while employs the exponential blinding (Exp-HashDH) method. An alternative method called multiplication blinding (Mult-HashDH) offers the improvement which the exponential blinding can't give in performance. This method substitutes multiple variable-base exponentiations with fixed-base exponentiations, and by taking full advantage of this outstanding feature and pre-computation, the computational efficiency of the client can be at least doubled. However, neither Mult-HashDH OPRF nor Mult-HashDH PSI can give a strict security proof under the semi-honest model, which makes the security of the scheme is now reeling from a crisis of confidence. In this paper, the security proof of a modified Mult-HashDH OPRF is formally given under the semi-honest model, and then the HashDH PSI protocol is constructed based on it, which not only ensures the security of the scheme but also have no influence on damaging the efficiency of the protocol. the experimental comparison shows that our protocol achieves 2.65−13.20× speedup in running time.
Expand
Cas Cremers, Mang Zhao
ePrint Report ePrint Report
Recent years have seen many advances in provably secure messaging protocols, both in features and detailed security proofs. However, some important areas of the design space have not yet been explored.

In this work we design the first provably secure protocol that at the same time achieves (i) strong resilience against fine-grained compromise, (ii) post-quantum security, and (iii) immediate decryption with constant-size overhead. Besides these main design goals, we prove that our protocol achieves even stronger security than protocols previously conjectured to be in this space. Finally, we introduce a novel definition of offline deniability suitable for our setting, and prove that our protocol meets it, notably when combined with a post-quantum initial key exchange.

We use game-based security notions to be able to prove post-quantum and strong compromise resilience. At a technical level, we build on the SM protocol and security notion from [1], but the security properties that we aim for require a different proof approach. Our work shows how these properties can be simultaneously achieved, and our temporal healing and offline deniability notions are of independent interest.
Expand
Benoit Chevallier-Mames
ePrint Report ePrint Report
Goh and Jarecki (Eurocrypt 2003) showed how to get a signature scheme from the computational Diffie-Hellman assumption, and they introduced the name EDL for signatures of this type. The corresponding EDL family of signature schemes is remarkable for several reasons: elegance, simplicity and tight security. However, EDL security proofs stand in the random oracle model, and, to the best of our knowledge, extending this family without using an idealization of hash functions has never been successful.

In this paper, we propose a new signature scheme belonging to the EDL family, which is simple, natural and efficient, without using the random oracle model. Our scheme is based on the very same assumption than the Boneh-Boyen scheme, namely the strong Diffie-Hellman assumption, with the precision that our groups are not bound to being bilinear. We also make use of a correlation-intractable hash function, for a particular relation related to discrete-logarithm.

In addition to the theoretical interest of extending the EDL family with- out the random oracle model, our scheme is also one of the very few schemes which achieve discrete-log security properties without relying on pairings.
Expand
Jesús-Javier Chi-Domínguez
ePrint Report ePrint Report
This paper centers on the SIDH proof of knowledge work by De Feo, Dobson, Galbraith, and Zobernig, which points out that the Castryck-Decru attack does not apply to their first 3-special soundness construction. This work analyzes and explicitly describes an optimized recoverable Sigma protocol based on that 3-special soundness SIDH-PoK construction. We also discuss the impact of moving to B-SIDH and G2SIDH setups in terms of sizes.

Due to the Castryck-Decru attack, we decided to write this paper relying on a theoretical analysis to list expected optimized signature sizes instead of updating eprint 2022/475. We point out that this work is a theoretical analysis extension of eprint 2022/475.
Expand
Miranda Christ, Joseph Bonneau
ePrint Report ePrint Report
Motivated by the goal of building a cryptocurrency with succinct global state, we introduce the abstract notion of a revocable proof system. We prove an information-theoretic result on the relation between global state size and the required number of local proof updates as statements are revoked (e.g., coins are spent). We apply our result to conclude that there is no useful trade-off point when building a stateless cryptocurrency: the system must either have a linear-sized global state (in the number of accounts in the system) or require a near-linear rate of local proof updates. The notion of a revocable proof system is quite general and also provides new lower bounds for set commitments, vector commitments and authenticated dictionaries.
Expand
Christian Picozzi, Alessio Meneghetti, Giovanni Tognolini
ePrint Report ePrint Report
We propose a novel post-quantum code-based digital signature algorithm whose security is based on the difficulty of decoding Quasi-Cyclic codes in systematic form, and whose trapdoor relies on the knowledge of a hidden Quasi-Cyclic Low-Density-Parity-Check (QC-LDPC) code. The utilization of Quasi-Cyclic (QC) codes allows us to balance between security and key size, while the LDPC property lighten the encoding complexity, thus the signing algorithm complexity, significantly.
Expand
Valence Cristiani, Maxime Lecomte, Philippe Maurine
ePrint Report ePrint Report
Unsupervised side-channel attacks allow extracting secret keys manipulated by cryptographic primitives through leakages of their physical implementations. As opposed to supervised attacks, they do not require a preliminary profiling of the target, constituting a broader threat since they imply weaker assumptions on the adversary model. Their downside is their requirement for some a priori knowledge on the leakage model of the device. On one hand, stochastic attacks such as the Linear Regression Analysis (LRA) allow for a flexible a priori, but are mostly limited to a univariate treatment of the traces. On the other hand, model-based attacks require an explicit formulation of the leakage model but have recently been extended to multidimensional versions allowing to benefit from the potential of Deep Learning (DL) techniques. The EVIL Machine Attack (EMA), introduced in this paper, aims at taking the best of both worlds. Inspired by generative adversarial networks, its architecture is able to recover a representation of the leakage model, which is then turned into a key distinguisher allowing flexible a priori. In addition, state-of-the-art DL techniques require 256 network trainings to conduct the attack. EMA requires only one, scaling down the time complexity of such attacks by a considerable factor. Simulations and real experiments show that EMA is applicable in cases where the adversary has very low knowledge on the leakage model, while significantly reducing the required number of traces compared to a classical LRA. Eventually, a generalization of EMA, able to deal with masked implementation is introduced.
Expand
Thomas Kaeding
ePrint Report ePrint Report
We demonstrate that with some ideas from group theory we are very often able to recover the keywords for a quagmire cipher from its key table. This would be the last task for a cryptologist in analyzing such a cipher.
Expand
Samuel Bouaziz--Ermann, Alex B. Grilo, Damien Vergnaud
ePrint Report ePrint Report
The subset cover problem for $k \geq 1$ hash functions, which can be seen as an extension of the collision problem, was introduced in 2002 by Reyzin and Reyzin to analyse the security of their hash-function based signature scheme HORS. The security of many hash-based signature schemes relies on this problem or a variant of this problem (e.g. HORS, SPHINCS, SPHINCS+, ...). Recently, Yuan, Tibouchi and Abe (2022) introduced a variant to the subset cover problem, called restricted subset cover, and proposed a quantum algorithm for this problem. In this work, we prove that any quantum algorithm needs to make $\Omega\left(k^{-\frac{2^{k-1}}{2^k-1}}\cdot N^{\frac{2^{k-1}-1}{2^k-1}}\right)$ queries to the underlying hash functions to solve the restricted subset cover problem, which essentially matches the query complexity of the algorithm proposed by Yuan, Tibouchi and Abe. We also analyze the security of the general $(r,k)$-subset cover problem, which is the underlying problem that implies the unforgeability of HORS under a $r$-chosen message attack (for $r \geq 1$). We prove that a generic quantum algorithm needs to make $\Omega\left(N^{k/5}\right)$ queries to the underlying hash functions to find a $(1,k)$-subset cover.

We also propose a quantum algorithm that finds a $(r,k)$-subset cover making $O\left(N^{k/(2+2r)}\right)$ queries to the $k$ hash functions.
Expand
Minki Hhan, Jiseung Kim, Changmin Lee, Yongha Son
ePrint Report ePrint Report
A cryptographic primitive based on the Learning With Errors (LWE) problem with its variants is a promising candidate for the efficient quantum-resistant public key cryptosystem. The recent schemes use the LWE problem with a small-norm or sparse secret key for better efficiency. Such constraints, however, lead to more tailor-made attacks and thus are a trade-off between efficiency and security. Improving the algorithm for the LWE problem with the constraints thus has a significant consequence in the concrete security of schemes.

In this paper, we present a new hybrid attack on the LWE problem. This new attack combines the primal lattice attack and an improved MitM attack called Meet-LWE, answering an open problem posed by May [Crypto'21].

According to our estimation, the new hybrid attack performs better than the previous attacks for the LWE problems with a sparse ternary secret key, which plays the significant role for the efficiency of fully homomorphic encryption schemes.

In terms of the technical part, we generalize the Meet-LWE algorithm to be compatible with Babai's nearest plane algorithm. As a side contribution, we remove the error guessing step in Meet-LWE, resolving another open question.
Expand

27 October 2022

Roberto Avanzi, Ionut Mihalcea, David Schall, Andreas Sandberg
ePrint Report ePrint Report
For both cloud and client applications, the protection of the confidentiality and integrity of remotely processed information is an increasingly common feature request. It is also a very challenging goal to achieve with reasonable costs in terms of memory overhead and performance penalty. In turn, this usually leads to security posture compromises in products.

In this paper we review the main technologies that have been proposed so far to address this problem, as well as some new techniques and combinations thereof. We systematise the treatment of protecting data in use by starting with models of the adversaries, thus allowing us to define different, yet consistent protection levels. We evaluate the storage and performance impacts and, as far as we are aware for the first time, we consider also the impact on performance when the measured benchmarks are the only running tasks or when they are just one task in an environment with heavy additional random traffic, thus simulating a cloud server under full load.

Using advanced techniques to compress counters can make it viable to store them on-chip -- for instance by adding on-chip RAM that can be as small as to 1/256-th of the off-chip RAM. This allows for implementations of memory protection providing full confidentiality, integrity and anti-replay protection with hitherto unattained penalties, especially in combination with the repurposing of ECC bits to store integrity tags. The performance penalty on a memory bus bandwidth saturated server can thus be contained under 1%.
Expand
Xiangyu Su, Xavier Défago, Mario Larangeira, Kazuyuki Mori, Takuya Oda, Yuta Okumura, Yasumasa Tamura, Keisuke Tanaka
ePrint Report ePrint Report
The demand for peer-to-peer (P2P) energy trading systems (ETS) grows alongside the development of house renewable energy generation. A P2P/ETS enables its peers to trade energy freely as in a double auction market. It requires a ledger to record peers' trading history. A typical approach is relying on a decentralized ledger, e.g., blockchain, with smart contract capabilities, unavoidably incurring high costs. Therefore, motivated to build a smart contract-free system, this work proposes a novel blockchain and consensus design utilizing the double auction characteristics of P2P/ETS. Concretely, we first revisit the blockchain data structure so that it can reflect auction bids. Next, we introduce a novel mining mechanism utilizing a bid-matching problem (BMP), which requires miners to find the best combination sets of sell/buy bids according to a given scoring function. Hence, the miner who mines the best-scored block can extend the blockchain. The fundamental difference between the BMP-based mining and traditional proof-of-X schemes, e.g., work or stake, is that our protocol selects blocks instead of miners. That is, a higher-scored block has better contents (bids and transactions), thus being preferable to a lower-scored block regardless of whether the miner is honest. Finally, we analyze miners' local chain dynamics and show a bound for the score distribution of the scoring function to prove that the protocol satisfies the key properties of consensus, i.e., persistence and liveness.
Expand
◄ Previous Next ►