International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

07 January 2023

Bar-Ilan University, Israel
Job Posting Job Posting
A postdoctoral position and a PhD position are open in the faculty of engineering at Bar-Ilan University, hosted by Prof. Carmit Hazay and starting in fall 2023.

The positions involve performing theoretical and practical research in cryptography and secure computation.

This project is in collaboration with the Technology Innovation Institute (TII) and participants will be offered several all-expenses-paid visits to TII.

The postdoctoral position is offered for 1 year and can be extended by an additional year contingent upon funding and satisfactory performance.

The PhD position spans an entire course of a PhD degree, with an expected duration of 4 years.

Applicants should have a general background in secure computation and cryptography. Candidates are expected to be highly motivated and mathematically capable.

Applications should include (1) a CV including a list of publications, (2) a short research statement, (3) names and contact information of 2-3 potential references.

Closing date for applications:

Contact: Applications should be emailed to carmit.hazay@biu.ac.il

Expand

05 January 2023

Zhenqiang Li, Fei Gao, Sujuan Qin, Qiaoyan Wen
ePrint Report ePrint Report
Optimizing the quantum circuit for implementing Advanced Encryption Standard (AES) is crucial for estimating the necessary resources in attacking AES by Grover algorithm. Previous studies have reduced the number of qubits required for the quantum circuits of AES-128/-192/-256 from 984/1112/1336 to 270/334/398, which is close to the optimal value of 256/320/384. It becomes a challenging task to further optimize them. Aiming at this task, we find a method about how the quantum circuit of AES S-box can be designed with the help of automation tool LIGHTER-R. Particularly, the multiplicative inversion in F_2^8, which is the main part of S-box, is converted into the multiplicative inversion (and multiplication) in F_2^4, then the latter can be implemented by LIGHTER-R because its search space is small enough. By this method, we construct the quantum circuits of S-box for mapping |a>|0> to |a>|S(a)> and |a>|b> to |a>|b+S(a)> with 20 qubits instead of 22 in the previous studies. Besides, we introduce new techniques to reduce the number of qubits required by the S-box circuit for mapping |a> to |S(a)>from 22 in the previous studies to 16. Accordingly, we synthesize the quantum circuits of AES-128/-192/-256 with 264/328/392 qubits, which implies a new record.
Expand
Oliver W. Gnilke, Jens Zumbrägel
ePrint Report ePrint Report
We consider actions of a group or a semigroup on a set, which generalize the setup of discrete logarithm based cryptosystems. Such cryptographic group actions have gained increasing attention recently in the context of isogeny-based cryptography. We introduce generic algorithms for the semigroup action problem and discuss lower and upper bounds. Also, we investigate Pohlig-Hellman type attacks in a general sense. In particular, we consider reductions provided by non-invertible elements in a semigroup, and we deal with subgroups in the case of group actions.
Expand
Katharina Boudgoust, Peter Scholl
ePrint Report ePrint Report
The learning with errors (LWE) assumption is a powerful tool for building encryption schemes with useful properties, such as plausible resistance to quantum computers, or support for homomorphic computations. Despite this, essentially the only method of achieving threshold decryption in schemes based on LWE requires a modulus that is superpolynomial in the security parameter, leading to a large overhead in ciphertext sizes and computation time.

In this work, we propose a (fully homomorphic) encryption scheme that supports a simple $t$-out-of-$n$ threshold decryption protocol while allowing for a polynomial modulus. The main idea is to use the Rényi divergence (as opposed to the statistical distance as in previous works) as a measure of distribution closeness. This comes with some technical obstacles, due to the difficulty of using the Rényi divergence in decisional security notions such as standard semantic security. We overcome this by constructing a threshold scheme with a weaker notion of one-way security and then showing how to transform any one-way threshold scheme into one guaranteeing semantic security.
Expand

04 January 2023

Yuyu Wang, Jiaxin Pan
ePrint Report ePrint Report
Non-interactive zero-knowledge (NIZK) proof systems are often constructed based on cryptographic assumptions. In this paper, we propose the first unconditionally secure NIZK system in the AC0-fine-grained setting. More precisely, our NIZK system has perfect soundness for all adversaries and unconditional zero-knowledge for AC0 adversaries, namely, an AC0 adversary can only break the zero-knowledge property with negligible probability unconditionally. At the core of our construction is an OR-proof system for satisfiability of 1 out of polynomial many statements.
Expand

03 January 2023

Antonio Guimarães, Hilder V. L. Pereira, Barry van Leeuwen
ePrint Report ePrint Report
Micciancio and Sorrel (ICALP 2018) proposed a bootstrapping algorithm that can refresh many messages at once with sublinearly many homomorphic operations per message. However, despite the attractive asymptotic cost, it is unclear if their algorithm can be practical, which reduces the impact of their results. In this work, we follow their general framework, but propose an amortized bootstrapping that is conceptually simpler and asymptotically cheaper. We reduce the number of homomorphic operations per refreshed message from $O(3^\rho \cdot n^{1/\rho} \cdot \log n)$ to $O(\rho \cdot n^{1/\rho})$, and the noise overhead from $\tilde{O}(n^{2 + 3 \cdot \rho})$ to $\tilde{O}(n^{1.5 + \rho})$. To obtain a concrete instantiation of our bootstrapping algorithm, we propose a double-CRT (aka RNS) version of the GSW scheme, including a new operation, called shrinking, used to speed-up homomorphic operations by reducing the dimension and ciphertext modulus of the ciphertexts. We provide a C++ implementation of our algorithm, thus showing that the amortized bootstrapping is not only theoretical, but practical. Moreover, it is up to 2.7 times faster than an equivalent non-amortized version for the smallest parameter set we consider, and gains are expected to increase as the parameters increase.
Expand
Tako Boris Fouotsa, Tomoki Moriya, Christophe Petit
ePrint Report ePrint Report
The SIDH protocol is an isogeny-based key exchange protocol using supersingular isogenies, designed by Jao and De Feo in 2011. The protocol underlies the SIKE algorithm which advanced to the fourth round of NIST's post-quantum standardization project in May 2022. The algorithm was considered very promising: indeed the most significant attacks against SIDH were meet-in-the-middle variants with exponential complexity, and torsion point attacks which only applied to unbalanced parameters (and in particular, not to SIKE).

This security picture dramatically changed in August 2022 with new attacks by Castryck-Decru, Maino-Martindale and Robert. Like prior attacks on unbalanced versions, these new attacks exploit torsion point information provided in the SIDH protocol. Crucially however, the new attacks embed the isogeny problem into a similar isogeny problem in a higher dimension to also affect the balanced parameters. As a result of these works, the SIKE algorithm is now fully broken both in theory and in practice.

Given the considerable interest attracted by SIKE and related protocols in recent years, it is natural to seek countermeasures to the new attacks. In this paper, we introduce two such countermeasures based on partially hiding the isogeny degrees and torsion point information in the SIDH protocol. We present a preliminary analysis of the resulting schemes including non-trivial generalizations of prior attacks. Based on this analysis we suggest parameters for our M-SIDH variant with public key sizes of 4434, 7037 and 9750 bytes respectively for NIST security levels 1, 3, 5.
Expand
Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Buddhavarapu, Benjamin Case
ePrint Report ePrint Report
Private matching for compute (PMC) establishes a match between two databases owned by mutually distrusted parties ($C$ and $P$) and allows the parties to input more data for the matched records for arbitrary downstream secure computation without rerunning the private matching component. The state-of-the-art PMC protocols only support two parties and assume that both parties can participate in computationally intensive secure computation. We observe that such operational overhead limits the adoption of these protocols to solely powerful entities as small data owners or devices with minimal computing power will not be able to participate.

We introduce two protocols to delegate PMC from party $P$ to untrusted cloud servers, called delegates, allowing multiple smaller $P$ parties to provide inputs containing identifiers and associated values. Our Delegated Private Matching for Compute protocols, called DPMC and D$^S$PMC, establish a join between the databases of party $C$ and multiple delegators $P$ based on multiple identifiers and compute secret shares of associated values for the identifiers that the parties have in common. We introduce a novel rerandomizable encrypted oblivious pseudorandom function (OPRF) construction, called EO, which allows two parties to encrypt, mask, and shuffle their data and is secure against semi-honest adversaries. Note that EO may be of independent interest. Our D$^S$PMC protocol limits the leakages of DPMC by combining our novel EO scheme and secure three-party shuffling. Finally, our implementation demonstrates the efficiency of our constructions by outperforming related works by approximately $10\times$ for the total protocol execution and by at least $20\times$ for the computation on the delegators.
Expand
Sietse Ringers
ePrint Report ePrint Report
We review the two RSA-based accumulators introduced by Camenisch and Lysyanskaya in 2002 in the setting of revocation for anonymous credential schemes, such as Idemix or BBS+. We show that in such a setting, the lower and upper bounds placed on the accumulated values in the paper are unnecessarily strict; they can be removed almost entirely (up to the group order of the credential scheme). This allows the accumulators to be used on elliptic curves of ordinary sizes, such as the ones on which BBS+ is commonly implemented. We also offer some notes and optimizations for implementations of anonymous credential schemes that use these accumulators to enable revocation.
Expand
Martin Brain, Carlos Cid, Rachel Player, Wrenna Robson
ePrint Report ePrint Report
Developers of computer-aided cryptographic tools are optimistic that formal methods will become a vital part of developing new cryptographic systems. We study the use of such tools to specify and verify the implementation of Classic McEliece, one of the code-based cryptography candidates in the fourth round of the NIST Post-Quantum standardisation Process. From our case study we draw conclusions about the practical applicability of these methods to the development of novel cryptography.
Expand
Adi Akavia, Ben Galili, Hayim Shaul, Mor Weiss, Zohar Yakhini
ePrint Report ePrint Report
With the development of sequencing technologies, viral strain classification -- which is critical for many applications, including disease monitoring and control -- has become widely deployed. Typically, a lab (client) holds a viral sequence, and requests classification services from a centralized repository of labeled viral sequences (server). However, such ``classification as a service'' raises privacy concerns. In this paper we propose a privacy-preserving viral strain classification protocol that allows the client to obtain classification services from the server, while maintaining complete privacy of the client's viral strains. The privacy guarantee is against active servers, and the correctness guarantee is against passive ones. We implemented our protocol and performed extensive benchmarks, showing that it obtains almost perfect accuracy ($99.8\%$--$100\%$) and microAUC ($0.999$), and high efficiency (amortized per-sequence client and server runtimes of $4.95$ms and $0.53$ms, respectively, and $0.21$MB communication). In addition, we present an extension of our protocol that guarantees server privacy against passive clients, and provide an empirical evaluation showing that this extension provides the same high accuracy and microAUC, with amortized per sequences overhead of only a few milliseconds in client and server runtime, and 0.3MB in communication complexity. Along the way, we develop an enhanced packing technique in which two reals are packed in a single complex number, with support for homomorphic inner products of vectors of ciphertexts. We note that while similar packing techniques were used before, they only supported additions and multiplication by constants.
Expand
Mick G.D. Remmerswaal, Lichao Wu, Sébastien Tiran, Nele Mentens
ePrint Report ePrint Report
Template attacks~(TAs) are one of the most powerful Side-Channel Analysis~(SCA) attacks. The success of such attacks relies on the effectiveness of the profiling model in modeling the leakage information. A crucial step for TA is to select relevant features from the measured traces, often called Points Of Interest~(POIs), to extract the leakage information. Previous research indicates that properly selecting the input leaking features could significantly increase the attack performance. However, due to the presence of SCA countermeasures and advancements in technology nodes, such features become increasingly difficult to extract with conventional approaches such as Principle Component Analysis (PCA) and the Sum Of Squared pairwise T-differences based method (SOST).

This work proposes a framework, AutoPOI, based on proximal policy optimization to automatically find, select, and scale down features. The input raw features are first grouped into small regions. The best candidates selected by the framework are further scaled down with an online-optimized dimensionality reduction neural network. Finally, the framework rewards the performance of these features with the results of TA. Based on the experimental results, the proposed framework can extract features automatically that lead to comparable state-of-the-art performance on several commonly used datasets.
Expand
Haodong Jiang, Zhi Ma, Zhenfeng Zhang
ePrint Report ePrint Report
Recently, in post-quantum cryptography migration, it has been shown that an IND-1-CCA-secure key encapsulation mechanisms (KEM) is required for replacing an ephemeral Diffie-Hellman (DH) in widely-used protocols, e.g., TLS, Signal, and Noise. IND-1-CCA security is a notion similar to the traditional IND-CCA security except that the adversary is restricted to one single decapsulation query. At EUROCRYPT 2022, based on CPA-secure public-key encryption (PKE), Huguenin-Dumittan and Vaudenay presented two IND-1-CCA KEM constructions called $T_{CH}$ and $T_H$, which are much more efficient than the widely-used IND-CCA-secure Fujisaki-Okamoto (FO) KEMs. The security of $T_{CH}$ was proved in both random oracle model (ROM) and quantum random oracle model (QROM). However, the QROM proof of $T_{CH}$ requires that the ciphertext size of the resulting KEM is twice as large as the one of the underlying PKE. While, the security of $T_H$ was only proved in the ROM, and the QROM proof is left open.

In this paper, we present an IND-1-CCA KEM construction $T_{RH}$, which can be seen as an implicit variant $T_H$, and is as efficient as $T_H$. We prove the security of $T_{RH}$ in both ROM and QROM with much tighter reductions than Huguenin-Dumittan and Vaudenay's work. In particular, our proof will not lead to ciphertext expansion. Moreover, for $T_{RH}$, $T_H$ and $T_{CH}$, we also show that a $O(1/q)$ ($O(1/q^2)$, resp.) reduction loss is unavoidable in the ROM (QROM, resp.), and thus claim that our ROM proof is optimal in tightness. Finally, we make a comprehensive comparison among the relative strengths of IND-1-CCA and IND-CCA in the ROM and QROM.
Expand
Thomas Marquet, Elisabeth Oswald
ePrint Report ePrint Report
This paper investigates different ways of applying multi-task learning in the context of two masked AES implementations (via the ASCADv1 and ASCADv2 databases). We propose novel ideas: jointly using multiple single-task models (aka multi-target learning), custom layers (enabling the use of multi-task learning without the need for information about randomness), and hierarchical multi-task models (owing to the idea of encoding the hierarchy flow directly into a multi-task learning model). Our work provides comparisons with existing approaches to deep learning and delivers a first attack using multi-task models without randomness during training, and a new best attack for the ASCADv2 dataset.
Expand
Shuai Cheng, Shengke Zeng, Haoyu Zeng, Yawen Feng, Jixiang Xiao
ePrint Report ePrint Report
The redundant of multimedia data made an unnecessary waste in encrypted cloud storage, unlike text with completely consistent content, multimedia data allows a certain degree of similarity in deduplication, In this work, we focus on the multimedia data which takes a seriously proportion of storage in scenarios such as data outsourcing to propose secure fuzzy deduplication without the additional servers based on Convergent Encryption(CE), say the Single-server Fuzzy Deduplication (SSFD). Compared to the related fuzzy deduplication, SSFD is strong at resisting brute-force attacks caused by server-server collusion, moreover, we also put server-client collusion attacks into security solutions. Additionally, to enhance the security of data, the proposed scheme provides both protection against replay attacks and verification of label consistency and adds no extra communication such as Proof of Ownership(PoW) in interaction. We separately presented a formal security analysis and performed performance at last to prove security solutions and evaluate the experimental results, it shows SSFD provides both a reliable fuzzy images secure deduplication protocol and a computationally feasible solution.
Expand
Grad Vodice, Croatia, 5 June - 9 June 2023
Event Calendar Event Calendar
Event date: 5 June to 9 June 2023
Submission deadline: 22 January 2023
Notification: 30 January 2023
Expand

02 January 2023

Chicago, USA, 2 July - 8 July 2023
Event Calendar Event Calendar
Event date: 2 July to 8 July 2023
Submission deadline: 12 February 2023
Notification: 2 April 2023
Expand
Melbourne, Australia, 11 July - 14 July 2023
Event Calendar Event Calendar
Event date: 11 July to 14 July 2023
Submission deadline: 27 March 2023
Notification: 28 May 2023
Expand
Melbourne, Australia, 10 July 2023
Event Calendar Event Calendar
Event date: 10 July 2023
Submission deadline: 15 February 2023
Notification: 31 March 2023
Expand
Aarhus, Denmark, 6 June - 8 June 2023
Event Calendar Event Calendar
Event date: 6 June to 8 June 2023
Submission deadline: 6 February 2023
Notification: 17 April 2023
Expand
◄ Previous Next ►