International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

16 September 2023

eShard
Job Posting Job Posting
Subject: Study of new counter-mesures for improved security of post-quantum cryptosystems facing side channel analysis. The objective of this PhD thesis is manifold, a first direction is to follow the new initiative of PQC algorithms and participate in the study of the new proposals from the hardware attack standpoint. Indeed, even if the NIST (National Institute of Standards and Technology) has initiated a standardization phase for a selected Key Exchange Mechanism (KEM) and three PQC Signature algorithms, the call for new algorithms is continuing to have alternatives on signature side. Indeed, the NIST officially launched a new Call for Proposals. For all these algorithms, implementation well protected against hardware attacks is a must have, especially for application with a high tradition in security, like banking, passport, . . . or where the fast growing deployment is demanding in terms of security, like automotive and IoT in general. To address this strong demand, the PhD student will address the practical validation counter-measures against side-channel attacks for the coming standard, and will also propose implementation alternatives.

Closing date for applications:

Contact: Pierre-Yvan Liardet

More information: https://cms.eshard.com/uploads/sujet_cifre_eshard_lirmm_5d622a4c95.pdf

Expand

15 September 2023

Peter Campbell
ePrint Report ePrint Report
The National Cyber Security Centre (NCSC) is the government organisation responsible for mitigating cyber security risks to the UK. Our work securing UK public- and private-sector networks involves (amongst many other security measures) research into cryptographic design, primarily to protect data requiring long-term security or data for which we have a particularly low tolerance of risk to its transmission and storage. Our algorithms prioritise robustness over other important considerations, such as performance, more highly than other designs.

We present GLEVIAN and VIGORNIAN: two AEAD modes with proofs of beyond-birthday security, security against nonce misuse, and against the release of unverified plaintext – both of the latter in strong notions of these security properties. We discuss our hierarchy of requirements for AEAD modes, and the rationale for the design choices made.

GLEVIAN and VIGORNIAN demonstrate we can achieve significantly improved robustness over GCM for use cases where some performance degradation is acceptable. We are not aware of other designs offering exactly the security properties of GLEVIAN and VIGORNIAN, and are publishing our designs to support the research that will inform the recently announced effort by NIST to standardise new modes of operation. We believe our work could be of interest to those with use cases similar to ours, and we offer suggestions for future research that might build on the work in this paper.
Expand
Benny Applebaum, Oded Nir
ePrint Report ePrint Report
A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and fully-decomposable randomized encoding (or garbling schemes). In fact, for all these primitives we do not even have super-linear lower bounds. Furthermore, it is unknown how to relate these questions to each other or to other complexity-theoretic questions.

In this note, we relate all these questions to the classical topic of query/space trade-offs, lifted to the setting of interactive proof systems. Specifically, we consider the following Advisor-Verifier-Prover (AVP) game: First, a function $f$ is given to the advisor who computes an advice $a$. Next, an input $x$ is given to the verifier and to the prover who claims that $f(x)=1$. The verifier should check this claim via a single round of interaction based on the private advice $a$ and without having any additional information on $f$. We focus on the case where the prover is laconic and communicates only a constant number of bits, and, mostly restrict the attention to the simplest, purely information-theoretic setting, where all parties are allowed to be computationally unbounded. The goal is to minimize the total communication complexity which is dominated by the length of the advice plus the length of the verifier's query.

As our main result, we show that a super-polynomial lower bound for AVPs implies a super-polynomial lower bound for a wide range of information-theoretic cryptographic tasks. In particular, we present a communication-efficient transformation from any of the above primitives into an AVP protocol. Interestingly, each primitive induces some additional property over the resulting protocol. Thus AVP games form a new common yardstick that highlights the differences between all the above primitives.

Equipped with this view, we revisit the existing (somewhat weak) lower bounds for the above primitives, and show that many of these lower bounds can be unified by proving a single counting-based lower bound on the communication of AVPs, whereas some techniques are inherently limited to specific domains. The latter is shown by proving the first polynomial separations between the complexity of secret-sharing schemes and conditional disclosure of secrets and between the complexity of randomized encodings and conditional disclosure of secrets.
Expand
Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, Sebastian Steinhorst
ePrint Report ePrint Report
TLS oracles guard the transition of web data from an authenticated session between a client and a server to a data representation that any third party can verify. Current TLS oracles resolve weak security assumptions with cryptographic algorithms that provide strong security guarantees (e.g., maliciously secure two-party computation). However, we notice that the conditions and characteristics of TLS 1.3 allow for reconsidering security assumptions. Our work shows that the deployment of semi-honest two-party computation is feasible with a single exception, while retaining equivalent security properties. Further, we introduce a new parity checksum construction to decouple the integrity verification over AEAD stream ciphers into dedicated proof systems and improve end-to-end performance benchmarks. We achieve a selective and privacy-preserving data opening on 16 kB of TLS 1.3 data in 2.11 seconds and open 10x more data compared to related approaches. Thus, our work sets new boundaries for privacy-preserving TLS 1.3 data proofs.
Expand
Nir bitansky, Tomer Solomon
ePrint Report ePrint Report
Homomorphic encryption is a central object in modern cryptography, with far-reaching applications. Constructions supporting homomorphic evaluation of arbitrary Boolean circuits have been known for over a decade, based on standard lattice assumptions. However, these constructions are leveled, meaning that they only support circuits up to some a-priori bounded depth. These leveled constructions can be bootstrapped into fully homomorphic ones, but this requires additional circular security assumptions, which are construction-dependent, and where reductions to standard lattice assumptions are no longer known. Alternative constructions are known based on indistinguishability obfuscation, which has been recently constructed under standard assumptions. However, this alternative requires subexponential hardness of the underlying primitives.

We prove a new bootstrapping theorem relying on functional encryption, which is known based on standard polynomial hardness assumptions. As a result we obtain the first fully homomorphic encryption scheme that avoids both circular security assumptions and super-polynomial hardness assumptions. The construction is secure against uniform adversaries, and can be made non-uniformly secure, under a widely-believed worst-case complexity assumption (essentially that non-uniformity does not allow arbitrary polynomial speedup).

At the heart of the construction is a new proof technique based on cryptographic puzzles. Unlike most cryptographic reductions, our security reduction does not fully treat the adversary as a black box, but rather makes explicit use of its running time (or circuit size).
Expand
Karim M. Abdellatif, Olivier Hériveaux
ePrint Report ePrint Report
DeepCover is a secure authenticator circuit family developed by Analog Devices. It was designed to provide cryptographic functions, true random number generation, and EEPROM secure storage. DS28C36 is one of the DeepCover family, which is widely used in secure boot and secure download for IoT. It has been recently deployed in the Coldcard Mk4 hardware wallet as a second secure element to enhance its security. In this paper, we present for the first time, a detailed evaluation for the DS28C36 secure EEPROM against Laser Fault Injection (LFI). In the context of a black box approach, we prove by experimental results that the chip resists single fault attacks. In order to overcome this, we present the use of leakage detection such as Welch’s T-test to facilitate finding the correct moments for injecting successful faults, which is not common in Fault Injection (FI) as this method has been used only for Side-Channel Attacks (SCAs). By using this knowledge, we found two moments for injecting laser pulses to extract the protected EEPROM user pages with 99% success rate. The attack can be reproduced within a day. The presented attack negatively impacts the users of DS28C36 (including Coldcard Mk4).
Expand
Koji Nuida, Tomoko Adachi
ePrint Report ePrint Report
Latin squares are a classical and well-studied topic of discrete mathematics, and recently Takeuti and Adachi (IACR ePrint, 2023) proposed (2,n)-threshold secret sharing based on mutually orthogonal Latin squares (MOLS). Hence efficient constructions of as large sets of MOLS as possible are also important from practical viewpoints. In this letter, we determine the maximum number of MOLS among a known class of Latin squares defined by weighted sums. We also mention some known property of Latin squares interpreted via the relation to secret sharing and a connection of Takeuti-Adachi's scheme to Shamir's secret sharing scheme.
Expand
Giuseppe Manzoni
ePrint Report ePrint Report
In the context of circuits leaking the internal state, there are various models to analyze what the adversary can see, like the $p$-random probing model in which the adversary can see the value of each wire with probability $p$. In this model, for a fixed $p$, it's possible to reach an arbitrary security by 'expanding' a stateless circuit via iterated compilation, reaching a security of $2^{-\kappa}$ with a polynomial size in $\kappa$.

The existing proofs of the expansion work by first compiling the gadgets multiple times, and then by compiling the circuit with the resulting gadgets while assuming the worst from the original circuit. Instead, we reframe the expansion as a security reduction from the compiled circuit to the original one. Additionally, we extend it to support a broader range of encodings, and arbitrary probabilistic gates with an arbitrary number of inputs and outputs.

This allows us to obtain two concrete results: (i) At the cost of an additional size factor $\mathcal{O}(\log(d)^3)$, any $d$-probing secure compiler can be used to produce stateless circuits with security $2^{-d}$ against any adversary that sees all wires with a constant SD-noise of $2^{-7.41}/p$, where $p$ is the characteristic of the circuit's field. (ii) Any $n$-shares compiler with $(t,f)$-RPE gadgets needs $t+1$ (which in practice is $\lceil\frac{n}{2}\rceil$) randoms in the random gadget instead of $n$.
Expand
Gideon Samid
ePrint Report ePrint Report
This article evaluates the innovation landscape facing the challenge of generating fresh shared randomness for cryptographic key exchange and various cyber security protocols. It discusses the main innovation thrust today, focused on quantum entanglement and on efficient engineering solutions to BB84, and its related alternatives. This innovation outlook highlights non-quantum solutions, and describes NEPSAR – a mechanical complexity based solution, which is applicable to any number of key sharing parties. Short-lived secret keys are also mentioned, as well as far-fetched innovation routes.
Expand
Minki Hhan, Aaram Yun
ePrint Report ePrint Report
In Crypto 2019, Zhandry showed how to define compressed oracles, which record quantum superposition queries to the quantum random oracle. In this paper, we extend Zhandry's compressed oracle technique to non-uniformly distributed functions with independently sampled outputs. We define two quantum oracles $\mathsf{CStO}_D$ and $\mathsf{CPhsO}_D$, which are indistinguishable to the non-uniform quantum random oracle where quantum access is given to a random function $H$ whose images $H(x)$ are sampled from a probability distribution $D$ independently for each $x$. We show that these compressed oracles record the adversarial quantum superposition queries. Also, we re-prove the optimality of Grover search and the collision resistance of non-uniform random functions, using our extended compressed oracle technique.
Expand
Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé, Benjamin Wesolowski
ePrint Report ePrint Report
The presumed hardness of the Shortest Vector Problem for ideal lattices (Ideal-SVP) has been a fruitful assumption to understand other assumptions on algebraic lattices and as a security foundation of cryptosystems. Gentry [CRYPTO'10] proved that Ideal-SVP enjoys a worst-case to average-case reduction, where the average-case distribution is the uniform distribution over the set of inverses of prime ideals of small algebraic norm (below $d^{O(d)}$ for cyclotomic fields, here $d$ refers to the field degree). De Boer et al. [CRYPTO'20] obtained another random self-reducibility result for an average-case distribution involving integral ideals of norm $2^{O(d^2)}$.

In this work, we show that Ideal-SVP for the uniform distribution over inverses of small-norm prime ideals reduces to Ideal-SVP for the uniform distribution over small-norm prime ideals. Combined with Gentry's reduction, this leads to a worst-case to average-case reduction for the uniform distribution over the set of \emph{small-norm prime ideals}. Using the reduction from Pellet-Mary and Stehl\'e [ASIACRYPT'21], this notably leads to the first distribution over NTRU instances with a polynomial modulus whose hardness is supported by a worst-case lattice problem.
Expand
Hongqing Liu, Chaoping Xing, Yanjiang Yang, Chen Yuan
ePrint Report ePrint Report
Beerliová-Trubíniová and Hirt introduced hyper-invertible matrix technique to construct the first perfectly secure MPC protocol in the presence of maximal malicious corruptions $\lfloor \frac{n-1}{3} \rfloor$ with linear communication complexity per multiplication gate [5]. This matrix allows MPC protocol to generate correct shares of uniformly random secrets in the presence of malicious adversary. Moreover, the amortized communication complexity of generating each sharing is linear. Due to this prominent feature, the hyper-invertible matrix plays an important role in the construction of MPC protocol and zero-knowledge proof protocol where the randomness needs to be jointly generated. However, the downside of this matrix is that the size of its base field is linear in the size of its matrix. This means if we construct an $n$-party MPC protocol over $\mathbb{F}_q$ via hyper-invertible matrix, $q$ is at least $2n$.

In this paper, we propose the ramp hyper-invertible matrix which can be seen as the generalization of hyper-invertible matrix. Our ramp hyper-invertible matrix can be defined over constant-size field regardless of the size of this matrix. Similar to the arithmetic secret sharing scheme, to apply our ramp hyper-invertible matrix to perfectly secure MPC protocol, the maximum number of corruptions has to be compromised to $\frac{(1-\epsilon)n}{3}$. As a consequence, we present the first perfectly secure MPC protocol in the presence of $\frac{(1-\epsilon)n}{3}$ malicious corruptions with constant communication complexity. Besides presenting the variant of hyper-invertible matrix, we overcome several obstacles in the construction of this MPC protocol. Our arithmetic secret sharing scheme over constant-size field is compatible with the player elimination technique, i.e., it supports the dynamic changes of party number and corrupted party number. Moreover, we rewrite the public reconstruction protocol to support the sharings over constant-size field. Putting these together leads to the constant-size field variant of celebrated MPC protocol in [5].

We note that although it was widely acknowledged that there exists an MPC protocol with constant communication complexity by replacing Shamir secret sharing scheme with arithmetic secret sharing scheme, there is no reference seriously describing such protocol in detail. Our work fills the missing detail by providing MPC primitive for any applications relying on MPC protocol of constant communication complexity. As an application of our perfectly secure MPC protocol which implies perfect robustness in the MPC-in-the-Head framework, we present the constant-rate zero-knowledge proof with $3$ communication rounds. The previous work achieves constant-rate with $5$ communication rounds [32] due to the statistical robustness of their MPC protocol. Another application of our ramp hyper-invertible matrix is the information-theoretic multi-verifier zero-knowledge for circuit satisfiability[43]. We manage to remove the dependence of the size of circuit and security parameter from the share size.
Expand
University of Surrey
Job Posting Job Posting
We are looking to recruit a full-time Research Fellow in Data Resilience, Security and Privacy. This is an excellent opportunity for a researcher to develop their own research agenda within the area of data resilience, security and privacy, and to work collaboratively with a team of colleagues working on related projects around privacy and security.

The role will be based in the Surrey Centre for Cyber Security (SCCS) within the School of Computer Science and Electronic Engineering at the University of Surrey and we offer the opportunity for hybrid working – some time on campus and some from home. We welcome applicants who wish to pursue the role through flexible working patterns.

You will have the opportunity to conduct research within the context of the Defence Data Research Centre, funded by DSTL, in which SCCS is a partner, alongside the Universities of Exeter and Liverpool, and the Digital Catapult. The Centre is focusing on problems related to the use of data for Artificial Intelligence applications, particularly around the challenges of bringing raw data to the state where it can be used. We consider these problems within a defence context, such as logistics support, object tracking and data wrangling. SCCS is focused on the area of data resilience, security and privacy, considering problems such as the trustworthiness of data and issues around anonymisation. The successful candidate will work under the direction of Professor Steve Schneider together with the support of other colleagues at Surrey and DDRC. The post holder will have exposure to the Centre’s broader research agenda in the areas of trusted computing, data privacy, privacy preserving security, applied cryptography, and a range of cyber security topics and as such provides an excellent opportunity to influence research directions during the course of the appointment.

Closing date for applications:

Contact: Professor Steve Schneider

More information: https://jobs.surrey.ac.uk/Vacancy.aspx?id=13521

Expand
Paderborn University, Department of Computer Science, Paderborn, Germany
Job Posting Job Posting
With the Institute for Photonic Quantum Systems (PhoQS), Paderborn University wants to establish an international research centre in the field of photonic quantum technologies. The aim is to develop new technologies for photon-based quantum applications as well as new theoretical and experimental concepts and research approaches. Ultimately, the focus is on understanding and controlling photonic quantum simulators and quantum computers.

Postdoc (f/m/d)
(salary is according to E13 TV-L)

A position with 100 % of the regular working hours is available as of the next possible date. The employment is initially limited to three years and is based on the legal regulations of the Wissen-schaftszeitvertragsgesetzes (WissZeitVG).

Your duties and responsibilities:
• Support in the construction and operation of a (photonic) quantum communication network and its combination with classical communication networks.
• Support for users of a quantum network
• Development and optimisation of quantum communication protocols, e.g. for key exchange protocols
• Organising and running courses on the basics and use of quantum networks and quantum communication protocols (basic to advanced)
• Leading a team for the operation of a quantum network and its integration into classical net-works

Hiring requirements:
• Completed PhD in computer science, mathematics or physics or comparable qualification
• Experience in the operation of communication networks and the design of network protocols (classical and/or quantum)
• High motivation and willingness for interdisciplinary cooperation between computer science and physics
• Good knowledge of German and English, both written and spoken
• Friendliness, flexibility, ability to work in a team, initiative and willingness to work independently

Closing date for applications:

Contact: Please send your application including a CV (preferably in a single pdf file) using the Ref. No. 6106 by 30th September, 2023 to: bloemer@upb.de

More information: https://cs.uni-paderborn.de/en/cuk

Expand
San Francisco, USA, 6 May - 9 May 2024
Event Calendar Event Calendar
Event date: 6 May to 9 May 2024
Submission deadline: 2 October 2023
Notification: 18 December 2023
Expand

13 September 2023

Nouri Alnahawi, Kathrin Hövelmanns, Andreas Hülsing, Silvia Ritsch, Alexander Wiesmaier
ePrint Report ePrint Report
We revisit OCAKE (ACNS 23), a generic recipe that constructs password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs) in a black-box way. This allows to potentially achieve post-quantum security by instantiating the KEM with a post-quantum KEM like KYBER. It was left as an open problem to further adapt the proof such that it also holds against quantum attackers. The security proof is given in the universal composability (UC) framework, which is commonly used to model and prove security of PAKE. So far, however, it is not known how to model or prove computational UC security against quantum adversaries. Even more so, if the proof makes use of idealized primitives like random oracles or ideal ciphers.

To pave the way towards reasoning post-quantum security, we therefore resort to a (still classical) game-based security proof in the BPR model (EUROCRYPT 2000). We consider this a crucial stepping stone towards a full proof of post-quantum security. We prove security of (a minor variation of) OCAKE generically, assuming the underlying KEM satisfies common notions of ciphertext indistinguishability, anonymity, and (computational) public key uniformity. To achieve tight security bounds, we relate security of OCAKE to multi-user variants of the aforementioned properties.

We provide a full detailed proof, something often omitted in publications concerned with game-based security of PAKE. As a side-contribution, we demonstrate how to handle password guesses in a game-based proof in detail. Something we were unable to find in the existing literature.
Expand
Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, Kui Ren
ePrint Report ePrint Report
Single Input Functionality (SIF) is a special case of MPC, where only one distinguished party called dealer holds the secret input. SIF allows the dealer to complete a computation task and send to other parties their respective outputs without revealing any additional information about its secret input. SIF has many applications, including multiple-verifier zero-knowledge and verifiable relation sharing, etc. Recently, several works devote to round-efficient realization of SIF, and achieve 2-round communication in the honest majority setting (Applebaum et al., Crypto 2022; Baum et al., CCS 2022; Yang and Wang, Asiacrypt 2022).

In this work, we propose the first practical 2-round protocol for SIF against \emph{a dishonest majority} in the preprocessing model; moreover, the online phase is highly efficient as it requires no cryptographic operations and achieves information theoretical security. For SIF among 5 parties, our construction takes 152.34ms (total) to evaluate an AES-128 circuit with 7.36ms online time. Compared to the state-of-the-art (honest majority) solution (Baum et al., CCS 2022), our construction is roughly 2$\times$ faster in the online phase, although more preprocessing time is needed. Compared to the state-of-the-art generic MPC against a dishonest majority (Wang et al., CCS 2017; Cramer et al., Crypto 2018), our construction outperforms them w.r.t. both total running time and online running time.
Expand
Sam A. Markelon, Mia Filić, Thomas Shrimpton
ePrint Report ePrint Report
Count-Min Sketch (CMS) and HeavyKeeper (HK) are two realizations of a compact frequency estimator (CFE). These are a class of probabilistic data structures that maintain a compact summary of (typically) high-volume streaming data, and provides approximately correct estimates of the number of times any particular element has appeared. CFEs are often the base structure in systems looking for the highest-frequency elements (i.e., top-$K$ elements, heavy hitters, elephant flows). Traditionally, probabilistic guarantees on the accuracy of frequency estimates are proved under the implicit assumption that stream elements do not depend upon the internal randomness of the structure. Said another way, they are proved in the presence of data streams that are created by non-adaptive adversaries. Yet in many practical use-cases, this assumption is not well-matched with reality; especially, in applications where malicious actors are incentivized to manipulate the data stream. We show that the CMS and HK structures can be forced to make significant estimation errors, by concrete attacks that exploit adaptivity. We analyze these attacks analytically and experimentally, with tight agreement between the two. Sadly, these negative results seem unavoidable for (at least) sketch-based CFEs with parameters that are reasonable in practice. On the positive side, we give a new CFE (Count-Keeper) that can be seen as a composition of the CMS and HK structures. Count-Keeper estimates are typically more accurate (by at least a factor of two) than CMS for ``honest" streams; our attacks against CMS and HK are less effective (and more resource intensive) when used against Count-Keeper; and Count-Keeper has a native ability to flag estimates that are suspicious, which neither CMS or HK (or any other CFE, to our knowledge) admits.
Expand
Nico Döttling, Tamer Mour
ePrint Report ePrint Report
Correlation intractability is an emerging cryptographic paradigm that enabled several recent breakthroughs in establishing soundness of the Fiat-Shamir transform and, consequently, basing non-interactive zero-knowledge proofs and succinct arguments on standard cryptographic assumptions. In a nutshell, a hash family is said to be \emph{correlation intractable} for a class of relations $\mathcal{R}$ if, for any relation $R\in\mathcal{R}$, it is hard given a random hash function $h\gets H$ to find an input $z$ s.t. $(z,h(z))\in R$, namely a correlation.

Despite substantial progress in constructing correlation intractable hash functions, all constructions known to date are based on highly-structured hardness assumptions and, further, are of complexity scaling with the circuit complexity of the target relation class.

In this work, we initiate the study of the barriers for building correlation intractability. Our main result is a lower bound on the complexity of any black-box construction of CIH from collision resistant hash (CRH), or one-way permutations (OWP), for any sufficiently expressive relation class. In particular, any such construction for a class of relations with circuit complexity $t$ must make at least $\Omega(t)$ invocations of the underlying building block.

We see this as a first step in developing a methodology towards broader lower bounds.
Expand
Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, Floris Westermann
ePrint Report ePrint Report
Convex Consensus (CC) allows a set of parties to agree on a value $v$ inside the convex hull of their inputs with respect to a predefined convexity notion, even in the presence of byzantine parties. In this work, we focus on achieving CC in the best-of-both-worlds paradigm, i.e., simultaneously tolerating at most $t_s$ corruptions if communication is synchronous, and at most $t_a \leq t_s$ corruptions if it is asynchronous. Our protocol is randomized, which is a requirement under asynchrony, and we prove that it achieves optimal resilience. In the process, we introduce communication primitives tailored to the best-of-both-worlds model, which we believe to be of independent interest. These are a deterministic primitive, which allows honest parties to obtain intersecting views, and a randomized primitive, leading to identical views (which is impossible to achieve deterministically).

Afterwards, we consider achieving consensus using deterministic protocols, for which the agreement condition must be appropriately relaxed depending on the convexity space. For the relevant case of graph convexity spaces, we find that a previous asynchronous approximate agreement protocol for chordal graphs is incorrect, and hereby give a new protocol for the problem designed for the best-of-both-worlds model and achieving tight point-wise resilience bounds. Finally, we show that asynchronous graph approximate agreement remains unsolvable by deterministic protocols even when corruptions are restricted to at most two crashing nodes and the distance agreement threshold is linear in the size of the graph.
Expand
◄ Previous Next ►