International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

19 February 2024

Antoine Joux, Julian Loss, Benedikt Wagner
ePrint Report ePrint Report
Given its integral role in modern encryption systems such as CRYSTALS-Kyber, the Fujisaki-Okamoto (FO) transform will soon be at the center of our secure communications infrastructure. An enduring debate surrounding the FO transform is whether to use explicit or implicit rejection when decapsulation fails. Presently, implicit rejection, as implemented in CRYSTALS-Kyber, is supported by a strong set of arguments. Therefore, understanding its security implications in different attacker models is essential.

In this work, we study implicit rejection through a novel lens, namely, from the perspective of kleptography. Concretely, we consider an attacker model in which the attacker can subvert the user's code to compromise security while remaining undetectable. In this scenario, we present three attacks that significantly reduce the security level of the FO transform with implicit rejection. Notably, our attacks apply to CRYSTALS-Kyber.
Expand
Kehao Ma, Minghui Xu, Yihao Guo, Lukai Cui, Shiping Ni, Shan Zhang, Weibing Wang, Haiyong Yang, Xiuzhen Cheng
ePrint Report ePrint Report
In recent years, decentralized computing has gained popularity in various domains such as decentralized learning, financial services and the Industrial Internet of Things. As identity privacy becomes increasingly important in the era of big data, safeguarding user identity privacy while ensuring the security of decentralized computing systems has become a critical challenge. To address this issue, we propose ADC (Anonymous Decentralized Computing) to achieve anonymity in decentralized computing. In ADC, the entire network of users can vote to trace and revoke malicious nodes. Furthermore, ADC possesses excellent Sybil-resistance and Byzantine fault tolerance, enhancing the security of the system and increasing user trust in the decentralized computing system. To decentralize the system, we propose a practical blockchain-based decentralized group signature scheme called Group Contract. We construct the entire decentralized system based on Group Contract, which does not require the participation of a trusted authority to guarantee the above functions. Finally, we conduct rigorous privacy and security analysis and performance evaluation to demonstrate the security and practicality of ADC for decentralized computing with only a minor additional time overhead.
Expand
Chuanlei Li, Minghui Xu, Jiahao Zhang, Hechuan Guo, Xiuzhen Cheng
ePrint Report ePrint Report
Decentralized Storage Networks (DSNs) represent a paradigm shift in data storage methodology, distributing and housing data across multiple network nodes rather than relying on a centralized server or data center architecture. The fundamental objective of DSNs is to enhance security, reinforce reliability, and mitigate censorship risks by eliminating a single point of failure. Leveraging blockchain technology for functions such as access control, ownership validation, and transaction facilitation, DSN initiatives aim to provide users with a robust and secure alternative to traditional centralized storage solutions. This paper conducts a comprehensive analysis of the developmental trajectory of DSNs, focusing on key components such as Proof of Storage protocols, consensus algorithms, and incentive mechanisms. Additionally, the study explores recent optimization tactics, encountered challenges, and potential avenues for future research, thereby offering insights into the ongoing evolution and advancement within the DSN domain.
Expand
Dan Boneh, Binyi Chen
ePrint Report ePrint Report
Folding is a recent technique for building efficient recursive SNARKs. Several elegant folding protocols have been proposed, such as Nova, Supernova, Hypernova, Protostar, and others. However, all of them rely on an additively homomorphic commitment scheme based on discrete log, and are therefore not post-quantum secure. In this work we present LatticeFold, the first lattice-based folding protocol based on the Module SIS problem. This folding protocol naturally leads to an efficient recursive lattice-based SNARK and an efficient PCD scheme. LatticeFold supports folding low-degree relations, such as R1CS, as well as high-degree relations, such as CCS. The key challenge is to construct a secure folding protocol that works with the Ajtai commitment scheme. The difficulty, is ensuring that extracted witnesses are low norm through many rounds of folding. We present a novel technique using the sumcheck protocol to ensure that extracted witnesses are always low norm no matter how many rounds of folding are used. Our evaluation of the final proof system suggests that it is as performant as Hypernova, while providing post-quantum security.
Expand

16 February 2024

Liyan Chen, Yilei Chen, Zikuan Huang, Nuozhou Sun, Tianqi Yang, Yiding Zhang
ePrint Report ePrint Report
We study how to construct hash functions that can securely instantiate the Fiat-Shamir transformation against bounded-depth adversaries. The motivation is twofold. First, given the recent fruitful line of research of constructing cryptographic primitives against bounded-depth adversaries under worst-case complexity assumptions, and the rich applications of Fiat-Shamir, instantiating Fiat-Shamir hash functions against bounded-depth adversaries under worst-case complexity assumptions might lead to further applications (such as SNARG for P, showing the cryptographic hardness of PPAD, etc.) against bounded-depth adversaries. Second, we wonder whether it is possible to overcome the impossibility results of constructing Fiat-Shamir for arguments [Goldwasser, Kalai, FOCS ’03] in the setting where the depth of the adversary is bounded, given that the known impossibility results (against p.p.t. adversaries) are contrived.

Our main results give new insights for Fiat-Shamir against bounded-depth adversaries in both the positive and negative directions. On the positive side, for Fiat-Shamir for proofs with certain properties, we show that weak worst-case assumptions are enough for constructing explicit hash functions that give $\mathsf{AC}^0[2]$-soundness. In particular, we construct an $\mathsf{AC}^0[2]$-computable correlation-intractable hash family for constant-degree polynomials against $\mathsf{AC}^0[2]$ adversaries, assuming $\oplus \mathsf{L}/\mathsf{poly} \not\subseteq \widetilde{\mathsf{Sum}}_{n^{-c}} \circ\mathsf{AC}^0[2]$ for some $c > 0$. This is incomparable to all currently-known constructions, which are typically useful for larger classes and against stronger adversaries, but based on arguably stronger assumptions. Our construction is inspired by the Fiat-Shamir hash function by Peikert and Shiehian [CRYPTO ’19] and the fully-homomorphic encryption scheme against bounded-depth adversaries by Wang and Pan [EUROCRYPT ’22].

On the negative side, we show Fiat-Shamir for arguments is still impossible to achieve against bounded-depth adversaries. In particular, • Assuming the existence of $\mathsf{AC}^0[2]$-computable CRHF against p.p.t. adversaries, for every poly-size hash function, there is a (p.p.t.-sound) interactive argument that is not $\mathsf{AC}^0[2]$-sound after applying Fiat-Shamir with this hash function. • Assuming the existence of $\mathsf{AC}^0[2]$-computable CRHF against $\mathsf{AC}^0[2]$ adversaries, there is an $\mathsf{AC}^0[2]$-sound interactive argument such that for every hash function computable by $\mathsf{AC}^0[2]$ circuits the argument does not preserve $\mathsf{AC}^0[2]$-soundness when applying Fiat-Shamir with this hash function. This is a low-depth variant of the result of Goldwasser and Kalai.
Expand
Hosein Hadipour, Patrick Derbez, Maria Eichlseder
ePrint Report ePrint Report
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT framework, resolving the issue up to one S-box layer. However, extending the DLCT framework to formalize the dependency between the two parts for multiple rounds remained an open problem. In this paper, we first tackle this problem from the perspective of boomerang analysis. By examining the relationships between DLCT, DDT, and LAT, we introduce a set of new tables facilitating the formulation of dependencies between the two parts of the DL distinguisher across multiple rounds. Then, as the main contribution, we introduce a highly versatile and easy-to-use automatic tool for exploring DL distinguishers, inspired by automatic tools for boomerang distinguishers. This tool considers the dependency between differential and linear trails across multiple rounds. We apply our tool to various symmetric primitives, and in all applications, we either present the first DL distinguishers or enhance the best-known ones. We achieve successful results against Ascon, AES, SERPENT, PRESENT, SKINNY, TWINE, CLEFIA, WARP, LBlock, Simeck, and KNOT. Furthermore, we demonstrate that, in some cases, DL distinguishers outperform boomerang distinguishers significantly.
Expand
Brent Waters, Mark Zhandry
ePrint Report ePrint Report
We construct an adaptively sound SNARGs in the plain model with CRS relying on the assumptions of (subexponential) indistinguishability obfuscation (iO), subexponential one-way functions and a notion of lossy functions we call length parameterized lossy functions. Length parameterized lossy functions take in separate security and input length parameters and have the property that the function image size in lossy mode depends only on the security parameter. We then show a novel way of constructing such functions from the Learning with Errors (LWE) assumption.

Our work provides an alternative path towards achieving adaptively secure SNARGs from the recent work of Waters and Wu. Their work required the use of (essentially) perfectly re-randomizable one way functions (in addition to obfuscation). Such functions are only currently known to be realizable from assumptions such as discrete log or factoring that are known to not hold in a quantum setting.
Expand
Offir Friedman, Avichai Marmor, Dolev Mutzari, Omer Sadika, Yehonatan C. Scaly, Yuval Spiizer, Avishay Yanai
ePrint Report ePrint Report
Motivated by the need for a massively decentralized network concurrently servicing many clients, we present novel low-overhead UC-secure, publicly verifiable, threshold ECDSA protocols with identifiable abort. For the first time, we show how to reduce the message complexity from O(n^2) to O(n) and the computational complexity from O(n) to practically O(1) (per party, where n is the number of parties). We require only a broadcast channel for communication. Therefore, we natively support use-cases like permissionless bridges and decentralized custody, where P2P channels between every pair of parties are infeasible. Consequently, the message complexity is reduced and the protocol is publicly verifiable. We enable all communication to be public (over a broadcast channel), by using a threshold additively homomorphic encryption scheme and novel zero-knowledge proofs. To further reduce the computation and communication overheads, our protocols employ novel batching and amortization techniques, which may be of independent interest.

Our second main contribution is the introduction of the notion of a 2PC-MPC protocol - a two-party ECDSA protocol where the second party is fully emulated by a network of n parties. This notion assures that both the first party (the client) and (a threshold) of the network are required to participate in signing, while abstracting away the internal structure of the network. In particular, the communication and computation complexities of the client remain independent of the network properties (e.g. size). This allows ultimate decentralization in distributed custody use-cases, as recent growing interest in the industry demands.

We report that our implementation completes the signing phase in 1.23 and 12.703 seconds, for 256 and 1024 parties, respectively.
Expand
Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, Antoine Joux
ePrint Report ePrint Report
We revisit the construction of signature scheme using the MPC-in-the-head paradigm, and focus in particular on constructions from the regular syndrome decoding assumption, a well-known variant of the syndrome decoding assumption. We obtain two main contributions:

– We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks. We design a new efficient PPRF construction provably secure in the multi-instance setting. The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a core technical contribution of our work. While previous constructions had to rely on a hash function, our construction uses only a fixed-key block cipher and is considerably more efficient as a result. Our improved PPRF can be used to speed up many MPC-in-the-head signatures, and illustrate it on two signatures: the recent SDitH (submitted to the NIST), and a new signature scheme that we introduce.

– We introduce a new signature scheme from the regular syndrome decoding assumption, based on a new protocol for the MPC-in-the-head paradigm, which significantly reduces communication compared to previous works. Our scheme is conceptually simple, though its security analysis requires a delicate and nontrivial combinatorial analysis.
Expand
Diana Ghinea, Chen-Da Liu-Zhang, Roger Wattenhofer
ePrint Report ePrint Report
Byzantine Agreement (BA) allows a set of $n$ parties to agree on a value even when up to $t$ of the parties involved are corrupted. While previous works have shown that, for $\ell$-bit inputs, BA can be achieved with the optimal communication complexity $\mathcal{O}(\ell n)$ for sufficiently large $\ell$, BA only ensures that honest parties agree on a meaningful output when they hold the same input, rendering the primitive inadequate for many real-world applications.

This gave rise to the notion of Convex Agreement (CA), introduced by Vaidya and Garg [PODC'13], which requires the honest parties' outputs to be in the convex hull of the honest inputs. Unfortunately, all existing CA protocols incur a communication complexity of at least $\Omega(\ell n^2)$. In this work, we introduce the first CA protocol with the optimal communication of $\mathcal{O}(\ell n)$ bits for inputs in $\mathbb{Z}$ of size $\ell = \Omega(\kappa \cdot n^2 \log n)$, where $\kappa$ is the security parameter.
Expand
Katharina Koschatko, Reinhard Lüftenegger, Christian Rechberger
ePrint Report ePrint Report
Gröbner basis cryptanalysis of hash functions and ciphers, and their underlying permutations, has seen renewed interest recently. Anemoi (Crypto'23) is a permutation-based hash function that is arithmetization-friendly, i.e., efficient for a variety of arithmetizations used in zero-knowledge proofs. In this paper, exploring both theoretical bounds as well as experimental validation, we present new complexity estimates for Gröbner basis attacks on the Anemoi permutation over prime fields. We cast our findings in what we call the six worlds of Gröbner basis cryptanalysis. As an example, keeping the same security arguments of the design, we conclude that at least $23 /45$ instead of $17 / 33$ rounds would need to be used for $128 / 256$-bit security before adding a security margin.
Expand
Nir Bitansky, Sapir Freizeit
ePrint Report ePrint Report
Additive randomized encodings (ARE), introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023), reduce the computation of a k-party function $f (x_1, . . . , x_k )$ to locally computing encodings $\hat{x}_i$ of each input xi and then adding them together over some Abelian group into an output encoding $\hat{y} = ∑ \hat{x}_i$, which reveals nothing but the result. In robust ARE (RARE) the sum of any subset of $\hat{x}_i$, reveals only the residual function obtained by restricting the corresponding inputs. The appeal of (R)ARE comes from the simplicity of the online part of the computation involving only addition, which yields for instance non-interactive multi-party computation in the shuffle model where messages from different parties are anonymously shuffled. Halevi, Ishai, Kushilevitz, and Rabin constructed ARE from standard assumptions and RARE in the ideal obfuscation model, leaving open the question of whether RARE can be constructed in the plain model. We construct RARE in the plain model from indistinguishability obfuscation, which is necessary, and a new primitive that we call pseudo-non-linear codes. We provide two constructions of this primitive assuming either Learning with Errors or Decision Diffie Hellman. A bonus feature of our construction is that it is online succinct. Specifically, encodings $\hat{x}_i$ can be decomposed to offline parts $\hat{z}_i$ that can be sent directly to the evaluator and short online parts $\hat{g}_i$ that are added together.
Expand
Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner
ePrint Report ePrint Report
As blockchains like Ethereum continue to grow, clients with limited resources can no longer store the entire chain. Light nodes that want to use the blockchain, without verifying that it is in a good state overall, can just download the block headers without the corresponding block contents. As those light nodes may eventually need some of the block contents, they would like to ensure that they are in principle available.

Data availability sampling, introduced by Bassam et al., is a process that allows light nodes to check the availability of data without download it. In a recent effort, Hall-Andersen, Simkin, and Wagner have introduced formal definitions and analyzed several constructions. While their work thoroughly lays the formal foundations for data availability sampling, the constructions are either prohibitively expensive, use a trusted setup, or have a download complexity for light clients scales with a square root of the data size.

In this work, we make a significant step forward by proposing an efficient data availability sampling scheme without a trusted setup and only polylogarithmic overhead. To this end, we find a novel connection with interactive oracle proofs of proximity (IOPPs). Specifically, we prove that any IOPP meeting an additional consistency criterion can be turned into an erasure code commitment, and then, leveraging a compiler due to Hall-Andersen, Simkin, and Wagner, into a data availability sampling scheme. This new connection enables data availability to benefit from future results on IOPPs. We then show that the widely used FRI IOPP satisfies our consistency criterion and demonstrate that the resulting data availability sampling scheme outperforms the state-of-the-art asymptotically and concretely in multiple parameters.
Expand
Simon Tollec, Vedad Hadžić, Pascal Nasahl, Mihail Asavoae, Roderick Bloem, Damien Couroussé, Karine Heydemann, Mathieu Jan, Stefan Mangard
ePrint Report ePrint Report
To assess the robustness of CPU-based systems against fault injection attacks, it is necessary to analyze the consequences of the fault propagation resulting from the intricate interaction between the software and the processor. However, current formal methodologies that combine both hardware and software aspects experience scalability issues, primarily due to the use of bounded verification techniques. This work formalizes the notion of $k$-fault resistant partitioning as an inductive solution to this fault propagation problem when assessing redundancy-based hardware countermeasures to fault injections. Proven security guarantees can then reduce the remaining hardware attack surface to consider in a combined analysis with the software, enabling a full co-verification methodology. As a result, we formally verify the robustness of the hardware lockstep countermeasure of the OpenTitan secure element to single bit-flip injections. Besides that, we demonstrate that previously intractable problems, such as analyzing the robustness of OpenTitan running a secure boot process, can now be solved by a co-verification methodology that leverages a $k$-fault resistant partitioning. We also report a potential exploitation of the register file vulnerability in two other software use cases. Finally, we provide a security fix for the register file, verify its robustness, and integrate it into the OpenTitan project.
Expand
Adam Blatchley Hansen, Jesper Buus Nielsen, Mark Simkin
ePrint Report ePrint Report
We study blockchain-based provably anonymous payment systems between light clients. Such clients interact with the blockchain through full nodes, who can see what the light clients read and write. The goal of our work is to enable light clients to perform anonymous payments, while maintaining privacy even against the full nodes through which they interact with the blockchain.

We formalize the problem in the universal composability model and present a provably secure solution to it. In comparison to existing works, we are the first ones that simultaneously provide strong anonymity guarantees, provable security, and anonymity with respect to the full nodes. Along the way, we make several contributions that may be of independent interest.

We define and construct efficient compressible randomness beacons, which produce unpredictable values in regular intervals and allow for storing all published values in a short digest. We define and construct anonymous-coin friendly encryption schemes and we show how they can be used within anonymous payment systems. We define and construct strongly oblivious read-once map, which can be seen as a special data structure that needs to satisfy a stronger notion of obliviousness than what is usually considered. We present a new approach, which is compatible with light clients, for mitigating double-spending attacks in anonymous cryptocurrencies.
Expand
Xiaoyu Ji, Junru Li, Yifan Song
ePrint Report ePrint Report
Secure multiparty computation (MPC) allows a set of $n$ parties to jointly compute a function on their private inputs. In this work, we focus on the information-theoretic MPC in the \emph{asynchronous network} setting with optimal resilience ($t
Our work closes this gap by presenting the first ACSS protocol that achieves $O(n\kappa)$ bits per sharing. When combined with the compiler from ACSS to AMPC by Choudhury and Patra [IEEE Trans. Inf. Theory '17], we obtain an AMPC with $O(n^2\kappa)$ bits per multiplication gate, improving the previously best-known result by a factor of $n^2$. Moreover, with a concurrent work that improves the compiler by Choudhury and Patra by a factor of $n$, we obtain the first AMPC with $O(n\kappa)$ bits per multiplication gate.
Expand
Alessandro Budroni, Jesús-Javier Chi-Domínguez, Giuseppe D'Alconzo, Antonio J. Di Scala, Mukul Kulkarni
ePrint Report ePrint Report
The Linear Code Equivalence (LCE) Problem has received increased attention in recent years due to its applicability in constructing efficient digital signatures. Notably, the LESS signature scheme based on LCE is under consideration for the NIST post-quantum standardization process, along with the MEDS signature scheme that relies on an extension of LCE to the rank metric, namely Matrix Code Equivalence (MCE) Problem. Building upon these developments, a family of signatures with additional properties, including linkable ring, group, and threshold signatures, has been proposed. These novel constructions introduce relaxed versions of LCE (and MCE), wherein multiple samples share the same secret equivalence. Despite their significance, these variations have often lacked a thorough security analysis, being assumed to be as challenging as their original counterparts. Addressing this gap, our work delves into the sample complexity of LCE and MCE --- precisely, the sufficient number of samples required for efficient recovery of the shared secret equivalence. Our findings reveal, for instance, that one shouldn't use the same secret twice in the LCE setting since this enables a polynomial time (and memory) algorithm to retrieve the secret. Consequently, our results unveil the insecurity of two advanced signatures based on variants of the LCE Problem.
Expand
Vipul Goyal, Chen-Da Liu-Zhang, Yifan Song
ePrint Report ePrint Report
Secure multi-party computation (MPC) allows a set of $n$ parties to jointly compute a function over their private inputs. The seminal works of Ben-Or, Canetti and Goldreich [STOC '93] and Ben-Or, Kelmer and Rabin [PODC '94] settled the feasibility of MPC over asynchronous networks. Despite the significant line of work devoted to improving the communication complexity, current protocols with information-theoretic security and optimal resilience $t
In this work we make progress towards closing this gap. We provide a novel MPC protocol that makes black-box use of an asynchronous complete secret-sharing (ACSS) protocol, where the cost per multiplication reduces to the cost of distributing a constant number of sharings via ACSS, improving a linear factor over the state of the art by Choudhury and Patra [IEEE Trans. Inf. Theory '17].

Instantiating ACSS with the protocol by Choudhury and Patra [J. Crypto '23] we achieve an MPC protocol with $\mathcal{O}(n^3C)$ communication. Moreover, with a recent concurrent work achieving ACSS with linear cost per sharing, we achieve an MPC with $\mathcal{O}(nC)$ communication.
Expand
Yifan Song, Xiaxi Ye
ePrint Report ePrint Report
In this work, we study the communication complexity of perfectly secure MPC protocol with guaranteed output delivery against $t=(n-1)/3$ corruptions. The previously best-known result in this setting is due to Goyal, Liu, and Song (CRYPTO, 2019) which achieves $O(n)$ communication per gate, where $n$ is the number of parties.

On the other hand, in the honest majority setting, a recent trend in designing efficient MPC protocol is to rely on packed Shamir sharings to speed up the online phase. In particular, the work by Escudero et al. (CCS 2022) gives the first semi-honest protocol that achieves a constant communication overhead per gate across all parties in the online phase while maintaining overall $O(n)$ communication per gate. We thus ask the following question: ``Is it possible to construct a perfectly secure MPC protocol with GOD such that the online communication per gate is $O(1)$ while maintaining overall $O(n)$ communication per gate?''

In this work, we give an affirmative answer by providing an MPC protocol with communication complexity $O(|C|+\mathsf{Depth}\cdot n+n^5)$ elements for the online phase, and $O(|C|\cdot n+\mathsf{Depth}\cdot n^2 + n^4)$ elements for the preprocessing phase, where $|C|$ is the circuit size and $\mathsf{Depth}$ is the circuit depth.
Expand
Kaisei Kajita, Go Ohtake, Tsuyoshi Takagi
ePrint Report ePrint Report
Adaptor signatures have attracted attention as a tool to ad-dress scalability and interoperability issues in blockchain applications, for example, such as atomic swaps for exchanging di˙erent cryptocur-rencies. Adaptor signatures can be constructed by extending of common digital signature schemes that both authenticate a message and disclose a secret witness to a speci˝c party. In Asiacrypt 2021, Aumayr et al. formulated the two-party adaptor signature as an independent crypto-graphic primitive. In this study, we extend the their adaptor signature scheme formulation to N party adaptor signature scheme, present its generic construction, and de˝ne the security to be satis˝ed. Next, we present a concrete construction based on Schnorr signatures and discuss the security properties.
Expand
◄ Previous Next ►