International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

02 May 2024

Xinwei Yong, Jiaojiao Wu, Jianfeng Wang
ePrint Report ePrint Report
Vector Commitment (VC) enables one to commit to a vector, and then the element at a specific position can be opened, with proof of consistency to the initial commitment. VC is a powerful primitive with various applications, including stateless cryptocurrencies. Recently, matrix commitment Matproofs (Liu and Zhang CCS 2022), as an extension of VC, has been proposed to reduce the communication and computation complexity of VC-based cryptocurrencies. However, Matproofs requires linear-sized public parameters, and the aggregated proof size may also increase linearly with the number of individual proofs aggregated. Additionally, the proof updating process involves the third party, known as Proof-Serving Nodes (PSNs), which leads to extra storage and communication overhead. In this paper, we first propose a multi-dimensional variant of matrix commitment and construct a new matrix commitment scheme for two-dimensional matrix, called 2D-Xproofs, which achieves optimal aggregated proof size without using PSNs. Furthermore, we present a highly maintainable three-dimensional scheme, 3D-Xproofs, which updates all proofs within time sublinear in the size of the committed matrix without PSNs' assistance. More generally, we could further increase the matrix dimensionality to achieve more efficient proof updates. Finally, we demonstrate the security of our schemes, showing that both schemes are position binding. We also implement both schemes, and the results indicate that our schemes enjoy constant-sized aggregated proofs and sublinear-sized public parameters, and the proof update time in 3D-Xproofs is $2.5\times$ faster than Matproofs.
Expand
Kelong Cong, Jiayi Kang, Georgio Nicolas, Jeongeun Park
ePrint Report ePrint Report
Privacy-preserving decision tree evaluation (PDTE) allows a client that holds feature vectors to perform inferences against a decision tree model on the server side without revealing feature vectors to the server. Our work focuses on the non-interactive batched setting where the client sends a batch of encrypted feature vectors and then obtains classifications, without any additional interaction. This is useful in privacy-preserving credit scoring, biometric authentication, and many more applications.

In this paper, we propose two novel non-interactive batched PDTE protocols, BPDTE_RCC and BPDTE_CW, based on two new ciphertext-plaintext comparison algorithms, the improved range cover comparison (RCC) comparator and the constant-weight (CW) piece-wise comparator, respectively. Compared to the current state-of-the-art Level Up (CCS'23), our comparison algorithms are up to $72\times$ faster for batched inputs of 16 bits. Moreover, we introduced a new tree traversal method called Adapted SumPath, to achieve $\mathcal{O}(1)$ complexity of the server's response, whereas Level Up has $\mathcal{O}(2^d)$ for a depth-$d$ tree where the client needs to look up classification values in a table. Overall, our PDTE protocols attain the optimal server-to-client communication complexity and are up to $17\times$ faster than Level Up in batch size 16384.
Expand
Albert Garreta, Hayk Hovhanissyan, Aram Jivanyan, Ignacio Manzur, Isaac Villalobos, Michał Zając
ePrint Report ePrint Report
We present two techniques to improve the computational and/or communication costs of STARK proofs: packing and modular split-and-pack. Packing allows to generate a single proof of the satisfiability of several constraints. We achieve this by packing the evaluations of all relevant polynomials in the same Merkle leaves, and combining all DEEP FRI functions into a single randomized validity function. Our benchmarks show that packing reduces the verification time and proof size compared to individually proving the satisfiability of each witness, while only increasing the prover time moderately. Modular split-and-pack is a proof acceleration technique where the prover divides a witness into smaller sub-witnesses. It then uses packing to prove the simultaneous satisfiability of each sub-witness. Compared to producing a proof of the original witness, splitting improves the prover time and memory usage, while increasing the verifier time and proof size. Ideas similar to modular split-and-pack seem to be used throughout the industry, but 1) generally execution traces are split by choosing the first $k$ rows, then the next $k$ rows, and so on; and 2) full recursion is used to prove the simultaneous satisfiability of the sub-witnesses, usually combined with a final wrapper proof (typically a Groth16 proof). We present a different way to split the witness that allows for an efficient re-writing of Plonkish-type constraints. Based on our benchmarks, we believe this approach (together with a wrapper proof) can improve upon existing splitting methods, resulting in a faster prover at essentially no cost in proof size and verification time.

Both techniques apply to popular FRI-based proof systems such as ethSTARK, Plonky2/3, RISC Zero, and Boojum.
Expand
Camille Nuoskala, Reyhaneh Rabbaninejad, Tassos Dimitriou, Antonis Michalas
ePrint Report ePrint Report
Functional Encryption (FE) allows users to extract specific function-related information from encrypted data while preserving the privacy of the underlying plaintext. Though significant research has been devoted to developing secure and efficient Multi-Input Functional Encryption schemes supporting diverse functions, there remains a noticeable research gap in the development of verifiable FE schemes. Functionality and performance have received considerable attention, however, the crucial aspect of verifiability in FE has been relatively understudied. Another important aspect that prior research in FE with outsourced decryption has not adequately addressed is the fairness of the data-for-money exchange between a curator and an analyst. This paper focuses on addressing these gaps by proposing a verifiable FE scheme for inner product computation. The scheme not only supports the multi-client setting but also extends its functionality to accommodate multiple users -- an essential feature in modern privacy-respecting services. Additionally, it demonstrates how this FE scheme can be effectively utilized to ensure fairness and atomicity in a payment protocol, further enhancing the trustworthiness of data exchanges.
Expand
Thijs Veugen, Vincent Dunning, Michiel Marcus, Bart Kamphorst
ePrint Report ePrint Report
Topic modelling refers to a popular set of techniques used to discover hidden topics that occur in a collection of documents. These topics can, for example, be used to categorize documents or label text for further processing. One popular topic modelling technique is Latent Dirichlet Allocation (LDA). In topic modelling scenarios, the documents are often assumed to be in one, centralized dataset. However, sometimes documents are held by different parties, and contain privacy- or commercially-sensitive information that cannot be shared. We present a novel, decentralized approach to train an LDA model securely without having to share any information about the content of the documents with the other parties. We preserve the privacy of the individual parties using a combination of privacy enhancing technologies. We show that our decentralized, privacy preserving LDA solution has a similar accuracy compared to an (insecure) centralised approach. With $1024$-bit Paillier keys, a topic model with $5$ topics and $3000$ words can be trained in around $16$ hours. Furthermore, we show that the solution scales linearly in the total number of words and the number of topics.
Expand

30 April 2024

Faculty of engineering, Bar-Ilan University, Israel
Job Posting Job Posting
A postdoctoral position is open in the faculty of engineering at Bar-Ilan University, hosted by Prof. Carmit Hazay and Prof. Ran Gelles.

The position involves performing theoretical research in cryptography, particularly on secure computation over unreliable channels and networks where the adversary controls the communication channels.

The position is offered for 1 year and can be extended by an additional year contingent upon funding and satisfactory performance.

Applicants should ideally have a background in information-theoretic secure computation as well as a general background in cryptography. Knowledge of coding theory and information theory is an advantage. Candidates are expected to be highly motivated and mathematically capable.

Applications should include
(1) a CV including a list of publications,
(2) a short research statement,
(3) names and contact information of 2-3 potential references.

Closing date for applications:

Contact: Applications should be emailed to carmit.hazay@biu.ac.il and ran.gelles@biu.ac.il

Expand
Filippo Valsorda, Go cryptography maintainer
Job Posting Job Posting

I am looking for one or two interns to work on open source cryptography engineering projects, spanning from testing of the Go cryptography standard library, to open source maintenance of industry-spanning projects, to key transparency auditing, to developer tooling.

Detailed examples and application process in the posting.

You’ll be free to choose the project that interests you most amongst those we will discuss, including options that will lead to contributing to popular upstream open source projects, and/or to publishing a technical report on my website or as an ePrint.

  • Fully remote. Flexible start date. Twelve weeks (or less).
  • Twice a week check-ins, general collaboration via Slack.
  • Flexible schedule, core collaboration hours 1500-1900 CET / 0900-1300 ET.
  • $5,000 / month ($1,250 / week) regardless of location.

I’m committed to making this a growth and success opportunity in a welcoming, inclusive, and supportive environment.

Apply by May 5th (anywhere on Earth)!

Closing date for applications:

Contact: Filippo Valsorda (see posting)

More information: https://filippo.io/internship

Expand

29 April 2024

Tim Beyne, Yu Long Chen
ePrint Report ePrint Report
In this paper, we study the problem of lower bounding any given cost function depending on the false positive and false negative probabilities of adversaries against indistinguishability security notions in symmetric-key cryptography. We take the cost model as an input, so that this becomes a purely information-theoretical question.

We propose power bounds as an easy-to-use alternative for advantage bounds in the context of indistinguishability with asymmetric cost functions. We show that standard proof techniques such as hybrid arguments and the H-coefficient method can be generalized to the power model, and apply these techniques to the PRP-PRF switching lemma, the Even-Mansour (EM) construction, and the sum-of-permutations (SoP) construction.

As the final and perhaps most useful contribution, we provide two methods to convert single-user power bounds into multi-user power bounds, and investigate their relation to the point-wise proximity method of Hoang and Tessaro (Crypto 2016). These method are applied to obtain tight multi-user power bounds for EM and SoP.
Expand
Anaïs Barthoulot, Olivier Blazy, Sébastien Canard
ePrint Report ePrint Report
Cryptographic accumulators, introduced in 1993 by Benaloh and De Mare, represent a set with a concise value and offer proofs of (non-)membership. Accumulators have evolved, becoming essential in anonymous credentials, e-cash, and blockchain applications. Various properties like dynamic and universal emerged for specific needs, leading to multiple accumulator definitions. In 2015, Derler, Hanser, and Slamanig proposed a unified model, but new properties, including zero-knowledge security, have arisen since. We offer a new definition of accumulators, based on Derler et al.’s, that is suitable for all properties. We also introduce a new security property, unforgeability of private evaluation, to protect accumulator from forgery and we verify this property in Barthoulot, Blazy, and Canard’s recent accumulator. Finally we provide discussions on security properties of accumulators and on the delegatable (non-)membership proofs property.
Expand
Vincent Rijmen
ePrint Report ePrint Report
In this audit we started from the security analysis provided in the design documentation of XHash8/12. We extended the analysis in several directions and confirmed the security claims that were made by the designers.
Expand
Davide Carnemolla, Dario Catalano, Mario Di Raimondo, Federico Savasta
ePrint Report ePrint Report
Homomorphic signatures allow to validate computation on signed data. Alice, holding a dataset, $\{m_1 , \ldots , m_t \}$ uses her secret key $\sf sk$ to sign these data and stores the authenticated dataset on a remote server. The server can later (publicly) compute $m = f(m_1,...,m_t)$ together with a signature $\sigma$ certifying that $m$ is indeed the correct output of the computation $f$. Over the last fifteen years, the problem of realizing homomorphic signatures has been the focus of numerous research works, with constructions now ranging from very efficient ones supporting linear functions to very expressive ones supporting (up to) arbitrary circuits. In this work we tackle the question of assessing the practicality of schemes belonging to this latter class. Specifically, we implement the GVW lattice based scheme for circuits from STOC 2015 and two, recently proposed, pairings based constructions building from functional commitments. Our experiments show that (both) pairings based schemes outperform GVW on all fronts.
Expand
Alberto Ibarrondo, Ismet Kerenciler, Hervé Chabanne, Vincent Despiegel, Melek Önen
ePrint Report ePrint Report
This paper introduces a novel protocol for privacy-preserving biometric identification, named Monchi, that combines the use of homomorphic encryption for the computation of the identification score with function secret sharing to obliviously compare this score with a given threshold and finally output the binary result. Given the cost of homomorphic encryption, BFV in this solution, we study and evaluate the integration of two packing solutions that enable the regrouping of multiple templates in one ciphertext to improve efficiency meaningfully. We propose an end-to-end protocol, prove it secure and implement it. Our experimental results attest to Monchi's applicability to the real-life use case of an airplane boarding scenario with 1000 passengers,taking less than one second to authorize/deny access to the plane to each passenger via biometric identification while maintaining the privacy of all passengers.
Expand
Xiaohai Dai, Chaozheng Ding, Hai Jin, Julian Loss, Ling Ren
ePrint Report ePrint Report
State-of-the-art asynchronous Byzantine Fault Tolerance (BFT) protocols integrate a partially-synchronous optimistic path. The holy grail in this paradigm is to match the performance of a partially-synchronous protocol in favorable situations and match the performance of a purely asynchronous protocol in unfavorable situations. Several prior works have made progress toward this goal by matching the efficiency of a partially-synchronous protocol in favorable conditions. However, their performance compared to purely asynchronous protocols is reduced when network conditions are unfavorable. To address these shortcomings, a recent work, Abraxas (CCS'23), presents the first optimistic asynchronous BFT protocol that retains stable throughput in all situations. However, Abraxas still incurs very high worst-case latency in unfavorable situations because it is slow at detecting the failure of its optimistic path. Another recent work, ParBFT (CCS'23) guarantees good latency in all situations, but suffers from reduced throughput in unfavorable situations due to its use of extra Asynchronous Binary Agreement (ABA) instances.

To approach our holy grail, we propose Ipotane. Ipotane achieves performance comparable to partially-synchronous protocols in favorable situations, and attains performance on par with purely asynchronous protocols in unfavorable situations---in both throughput and latency. This is accomplished by our newly introduced primitive Dual-functional Byzantine Agreement (DBA), which packs the functions of (biased) ABA and Validated Asynchronous Byzantine Agreement (VABA). In the context of Ipotane, it promptly detects the optimistic path's failure and, at the same time, generates blocks on the pessimistic path with little extra work. We conduct extensive experiments to demonstrate that Ipotane achieves high throughput and low latency in all situations.
Expand
Samuel Lavery
ePrint Report ePrint Report
This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance security through variations on chaining mechanisms. We also provide a reduction to the module modulus subset sum problem under conservative assumptions.

Empirical evidence and statistical testing support the zero-knowledge, completeness, and soundness properties of the Adh proof system. Comparative analysis demonstrates the Adh system's advantages in terms of key and proof sizes over existing post-quantum schemes like Kyber and Dilithium.

This paper represents an early preprint and is a work in progress. The core security arguments and experimental results are present, and formal proofs and additional analysis are provided. We invite feedback and collaboration from the research community to further strengthen the security foundations of the Adh system and explore its potential applications in quantum-resistant cryptography.
Expand
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
ePrint Report ePrint Report
The elliptic curve-based Enhanced Privacy ID (EPID) signature scheme is broadly used for hardware enclave attestation by many platforms that implement Intel Software Guard Extensions (SGX) and other devices. This scheme has also been included in the Trusted Platform Module (TPM) specifications and ISO/IEC standards. However, it is insecure against quantum attackers. While research into quantum-resistant EPID has resulted in several lattice-based schemes, Boneh et al. have initiated the study of EPID signature schemes built only from symmetric primitives. We observe that for this line of research, there is still room for improvement. In this paper, we propose a new hash-based EPID scheme, which includes a novel and efficient signature revocation scheme. In addition, our scheme can handle a large group size (up to $2^{60}$ group members), which meets the requirements of rapidly developing hardware enclave attestation applications. The security of our scheme is proved under the Universal Composability (UC) model. Finally, we have implemented our EPID scheme, which, to our best knowledge, is the first implementation of EPID from symmetric primitives.
Expand
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
ePrint Report ePrint Report
Direct Anonymous Attestation (DAA) was designed for the Trusted Platform Module (TPM) and versions using RSA and elliptic curve cryptography have been included in the TPM specifications and in ISO/IEC standards. These standardised DAA schemes have their security based on the factoring or discrete logarithm problems and are therefore insecure against quantum attackers. Research into quantum-resistant DAA has resulted in several lattice-based schemes. Now in this paper, we propose the first post-quantum DAA scheme from symmetric primitives. We make use of a hash-based signature scheme, which is a slight modification of SPHINCS+, as a DAA credential. A DAA signature, proving the possession of such a credential, is a multiparty computation-based non-interactive zero-knowledge proof. The security of our scheme is proved under the Universal Composability (UC) model. While maintaining all the security properties required for a DAA scheme, we try to make the TPM's workload as low as possible. Our DAA scheme can handle a large group size (up to $2^{60}$ group members), which meets the requirements of rapidly developing TPM applications.
Expand
Liqun Chen, Changyu Dong, Christopher J. P. Newton, Yalan Wang
ePrint Report ePrint Report
Group signatures and their variants have been widely used in privacy-sensitive scenarios such as anonymous authentication and attestation. In this paper, we present a new post-quantum group signature scheme from symmetric primitives. Using only symmetric primitives makes the scheme less prone to unknown attacks than basing the design on newly proposed hard problems whose security is less well-understood. However, symmetric primitives do not have rich algebraic properties, and this makes it extremely challenging to design a group signature scheme on top of them. It is even more challenging if we want a group signature scheme suitable for real-world applications, one that can support large groups and require few trust assumptions. Our scheme is based on MPC-in-the-head non-interactive zero-knowledge proofs, and we specifically design a novel hash-based group credential scheme, which is rooted in the SPHINCS+ signature scheme but with various modifications to make it MPC (multi-party computation) friendly. The security of the scheme has been proved under the fully dynamic group signature model. We provide an implementation of the scheme and demonstrate the feasibility of handling a group size as large as $2^{60}$. This is the first group signature scheme from symmetric primitives that supports such a large group size and meets all the security requirements.
Expand
B Pradeep Kumar Reddy, Ruchika Meel, Ayantika Chatterjee
ePrint Report ePrint Report
Machine learning (ML) as a service has emerged as a rapidly expanding field across various industries like healthcare, finance, marketing, retail and e-commerce, Industry 4.0, etc where a huge amount of data is gen- erated. To handle this amount of data, huge computational power is required for which cloud computing used to be the first choice. However, there are several challenges in cloud computing like limitations of bandwidth, network connectivity, higher latency, etc. To address these issues, edge computing is prominent nowadays, where the data from sensor nodes is collected and processed on low-cost edge devices. As simple sensor nodes are not capable of handling complex computations of ML models, data from sensor nodes need to be transferred to some nearest edge devices for further processing. If this sensor data is related to some security- critical application, the privacy of such sensitive data needs to be preserved both during communication from sensor node to edge device and computation in edge nodes. This increased need to perform edge-based ML on privacy-preserved data has led to a surge in interest in homomorphic encryption (HE) due to its ability to perform computations on encrypted form of data. The highest form of HE, Fully Homomorphic Encryption (FHE), is capable of theoretically handling arbitrary encrypted algorithms but comes with huge computational overhead. Hence, the implementation of such a complex encrypted ML model on a single edge node is not very practical in terms of latency requirements. Our paper introduces a low-cost encrypted ML framework on a distributed edge cluster, where multiple low-cost edge devices (Raspberry Pi boards) are clustered to perform encrypted distributed K-Nearest Neighbours (KNN) algorithm computations. Our experimental result shows, KNN prediction on standard Wisconsin breast cancer dataset takes approximately 1.2 hours, implemented on a cluster of six pi boards, maintaining end-to-end data confidentiality of critical medical data without any re- quirement of costly cloud-based computation resource support
Expand
Pierrick Méaux
ePrint Report ePrint Report
he unique design of the FLIP cipher necessitated a generalization of standard cryptographic criteria for Boolean functions used in stream ciphers, prompting a focus on properties specific to subsets of $\mathbb{F}_2^n$ rather than the entire set. This led to heightened interest in properties related to fixed Hamming weight sets and the corresponding partition of $\mathbb{F}_2^n$ into n+1 such sets. Consequently, the concept of Weightwise Almost Perfectly Balanced (WAPB) functions emerged, which are balanced on each of these sets.Various studies have since proposed WAPB constructions and examined their cryptographic parameters for use in stream cipher filters.

In this article, we introduce a general approach to constructing WAPB functions using the concept of order, which simplifies implementation and enhances cryptographic strength. We present two new constructions: a recursive method employing multiple orders on binary strings, and another utilizing just two orders. We establish lower bounds for nonlinearity and weightwise nonlinearities within these classes. By instantiating specific orders, we demonstrate that some achieve minimal algebraic immunity, while others provide functions with guaranteed optimal algebraic immunity. Experimental results in 8 and 16 variables indicate that using orders based on field representation significantly outperforms other methods in terms of both global and weightwise algebraic immunity and nonlinearity. Additionally, we extend the recursive construction to create WAPB functions for any value of n, with experiments in 10, 12, and 14 variables confirming that these order-based functions exhibit robust cryptographic parameters. In particular, those based on field orders display optimal degrees and algebraic immunity, and strong weightwise nonlinearities and algebraic immunities.
Expand
Sanchita Ghosh, Anant Sharma, Sreetama Das, Shibdas Roy
ePrint Report ePrint Report
Problems in the complexity class $NP$ are not all known to be solvable, but are verifiable given the solution, in polynomial time by a classical computer. The complexity class $BQP$ includes all problems solvable in polynomial time by a quantum computer. Prime factorization is in $NP$ class, and is also in $BQP$ class, owing to Shor's algorithm. The hardest of all problems within the $NP$ class are called $NP$-complete. If a quantum algorithm can solve an $NP$-complete problem in polynomial time, it would imply that a quantum computer can solve all problems in $NP$ in polynomial time. Here, we present a polynomial-time quantum algorithm to solve an $NP$-complete variant of the $SUBSET-SUM$ problem, thereby, rendering $NP\subseteq BQP$. We illustrate that given a set of integers, which may be positive or negative, a quantum computer can decide in polynomial time whether there exists any subset that sums to zero. There are many real-world applications of our result, such as finding patterns efficiently in stock-market data, or in recordings of the weather or brain activity. As an example, the decision problem of matching two images in image processing is $NP$-complete, and can be solved in polynomial time, when amplitude amplification is not required.
Expand
◄ Previous Next ►