IACR News
Here you can see all recent updates to the IACR webpage. These updates are also available:
12 June 2024
Steven Galbraith
ePrint ReportThe two cases of main interest for discrete logarithm cryptography are random curves (flat volcanoes) and pairing-based crypto (tall volcanoes with crater of constant or polynomial size). In both cases we show a rigorous $\tO( q^{1/4})$ algorithm to compute an isogeny between any two curves in the isogeny class. We stress that this paper is motivated by pre-quantum elliptic curve cryptography using ordinary elliptic curves, which is not yet obsolete.
11 June 2024
Bidhannagar, India, 14 December - 17 December 2024
Event CalendarNewcastle University
Job PostingPrivacy-enhancing technologies (PETs), such as Secure Multi-party Computation (MPC) and Federated Learning (FL) allow parties to collaboratively analyze a collection of data partitions where each data partition is contributed by a different party (such as banks, or law enforcement agencies).
Two facts about most PETs exist: (i) often the output of PETs reveals some information about the parties’ private input sets (i.e., the computation result in FL or MPC), and (ii) various variants of PETs do not output the result to all parties, even in those PETs that do, not all of the parties are necessarily interested in it. Given these facts, a natural question arises: How can we incentivize parties that do not receive the result or do not express interest in it to participate in PETs?
This project aims to develop new PETs that incentivize participants to share their sensitive data by fairly rewarding them. Additionally, the project aims to ensure these PETs remain secure even when adversaries compromise some parties. The Secure and Resilient Systems research group (and possibly Edge AI Hub) will host the successful candidate at the Urban Science Building, Newcastle University.
Eligibility Criteria:
Further Information: For more information and instructions on how to apply take a look at this webpage:
https://shorturl.at/PGX3Z
Closing date for applications:
Contact: Dr Aydin Abadi
University of Bergen, Norway
Job PostingClosing date for applications:
Contact: Lilya Budaghyan
More information: https://www.jobbnorge.no/en/available-jobs/job/262978/associate-professor-in-cybersecurity
10 June 2024
Peiyao Sheng, Chenyuan Wu, Dahlia Malkhi, Michael K. Reiter, Chrysoula Stathakopoulou, Michael Wei, Maofan Yin
ePrint ReportYanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Dawu Gu
ePrint ReportTo bridge the gap, we also design a new PSU protocol that can avoid the unnecessary leakage. Unlike the AHE-based PSU protocols, our new construction only relies on symmetric-key operations other than base OTs, thereby being much more scalable. The experimental results demonstrate that our protocol can obtain at least 873.74× speedup over the best-performing AHE-based scheme. Moreover, our performance is comparable to that of the state-of-the-art PSU protocol (Chen et al., USENIX Security 2023), which also suffers from the unnecessary leakage.
Edsger Hughes
ePrint ReportBenoit Libert
ePrint ReportBishnu Charan Behera, Somindu C. Ramanna
ePrint ReportYuanming Song, Lenka Mareková, Kenneth G. Paterson
ePrint ReportBishnu Charan Behera, Somindu C. Ramanna
ePrint ReportOur constructions are obtained by transforming the unbounded inner product functional encryption (IPFE) schemes of Dufour-Sans and Pointcheval (ACNS 2019), one in the $strict ~ domain$ setting and the other in the $permissive ~ domain$ setting. Interestingly, in the latter case, we prove security from DBDH, a static assumption while the original IPE scheme relied on an interactive parameterised assumption. In terms of efficiency, features of the IPE constructions are retrained after transformation to NIPE. Notably, the public key and decryption keys have constant size.
Helger Lipmaa
ePrint Report08 June 2024
Josh Benaloh, Michael Naehrig, Olivier Pereira
ePrint ReportIn practice, however, this approach can be fairly challenging to deploy. Human trustees rarely have a clear understanding of their responsibilities, and they typically all use identical software for their tasks. Rather than exercising independent judgment to maintain privacy, trustees are often reduced to automata who just push the buttons they are told to when they are told to, doing little towards protecting voter privacy. This paper looks at several aspects of the trustee experience. It begins by discussing various cryptographic protocols that have been used for key generation in elections, explores their impact on the role of trustees, and notes that even the theory of proper use of trustees is more challenging than it might seem. This is illustrated by showing that one of the only references defining a full threshold distributed key generation (DKG) for elections defines an insecure protocol. Belenios claims to rely on that reference for its DKG and security proof. Fortunately, it does not inherit the same vulnerability. We offer a security proof for the Belenios DKG.
The paper then discusses various practical contexts, in terms of humans, software, and hardware, and their impact on the practical deployment of a trustee-based privacy model.
Yevgeniy Dodis, Daniel Jost, Antonio Marcedone
ePrint ReportInstead, we formalize a new primitive called Compact Key Storage (CKS) as the "right" solution to this problem. Such CKS scheme allows a mutable set of parties to delegate to a server storage of an increasing set of keys, while each client maintains only a small state. Clients update their state as they learn new keys (maintaining PCS), or whenever they want to forget keys (achieving FS), often without the need to interact with the server. Moreover, access to the keys (or some subset of them) can be efficiently delegated to new group members, who all efficiently share the same server's storage.
We carefully define syntax, correctness, privacy, and integrity of CKS schemes, and build two efficient schemes provably satisfying these notions. Our line scheme covers the most basic "all-or-nothing" flavor of CKS, where one wishes to compactly store and delegate the entire history of past secrets. Thus, new users enjoy the efficiency and compactness properties of the CKS only after being granted access to the entire history of keys. In contrast, our interval scheme is only slightly less efficient but allows for finer-grained access, delegation, and deletion of past keys.
Seetal Potluri, Farinaz Koushanfar
ePrint ReportWe make important technical observations and identify key open research directions. Subsequently, we discuss the state-of-the-art defenses against NN model RE, identify certain categorization criteria, and compare the existing works based on these criteria. We note significant qualitative gaps for defenses, and suggest recommendations for important open research directions for protection of NN models. Finally, we discuss limitations of existing work in terms of the types of models where security evaluation or defenses were proposed, and suggest open problems in terms of protecting practically expensive model IPs.
Efrat Cohen, Anat Paskin-Cherniavsky
ePrint ReportThis model assumes that the number of parties is known when preparing the shares and giving the shares to the parties; furthermore, the sharing algorithm and the share size are determined by the number of parties, e.g. in the best-known secret-sharing scheme for an arbitrary $n$-party access structure the share size is $1.5^{n}$ by Appelbaum and Nir.
The assumption that the number of parties is known in advance is problematic in many scenarios. Of course, one can take some upper bound on the number of parties. On one hand, if this bound is big, then the share size will be large even if only few parties actually participate in the scheme. On the other hand, if this bound is small, then there is a risk that too many parties will arrive and no further shares can be produced; this will require an expensive re-sharing of the secret and updating all shares (which can be impossible if some parties are temporally off-line). Thus, we need to consider models with an unbounded number of parties.
To address these concrens, Komargodski, Naor, and Yogev defined \emph{evolving secret-sharing schemes} with an unbounded number of parties. In a nutshell, evolving AS's are defined as a monotone collection of finite qualified sets, such that at any time $t$ a set $A\subseteq [t]$ is either qualified or not, depending only on $A$ itself, and not on $t$ (a `global' monotonicity notion).
Quantum secret sharing (QSS) in the standard $n$-party setting, where the secret is an arbitrary quantum state (say, qbit), rather than classical data. In face of recent advancements in quantum computing, this is a natural notion to consider, and has been studied before.
In this work, we explore the natural notion of quantum evolving secret sharing (QESS). While this notion has been studied by Samadder 20', we make several new contributions. (1) The notion of QESS was only implicit in the above work. We formalize this notion (as well as AS's for which it is applicable), and in particular argue that the variant implied by the above work did not require `global monotonicity' of the AS, which was the standard in the evolving secret sharing literature, and appears to be useful for QESS as well. (2) Discuss the applicability and limitations of the notion in the quantum setting that follow from the no-cloning theorem, and make its usability more limited. Yet, we argue that fundamental advantages of the evovling setting, such as keeping parties' shares independent of the total number of parties that arrive can be mantainted in the quantum setting. (3) We characterize the AS's ammenable to construction of QSSS - so called `no cloning' evolving AS's, and point out that this class is not severly restricted relatively to the class of all evolving AS's. On the positive side, our construction combines the compiler of [Smith 00'] with ideas of hybrid secret sharing of [Goyal et. al 23'], to obtain a construction with share size comparable to the best classical linear share complexity of the scheme.
Tomer Ashur, Amit Singh Bhati
ePrint ReportIn this work, we first introduce $\mathsf{GSponge}$, a generalized form of the Sponge construction offering enhanced flexibility in input chaining, field sizes, and padding types. $\mathsf{GSponge}$ not only captures all existing sponge variants but also unveils new, efficient ones. The generic structure of $\mathsf{GSponge}$ facilitates the discovery of two micro-optimizations for already deployed sponges. Firstly, it allows a new padding rule based on zero-padding and domain-separated inputs, saving one full permutation call in certain cases without increasing the generation time of zero-knowledge proofs. Secondly, it allows to absorb up to $\mathsf{c}/2$ more elements (that can save another permutation call for certain message lengths) without compromising the indifferentiability security. These optimizations enhance hashing time for practical use cases such as Merkle-tree hashing and short message processing.
We then propose a new efficient instantiation of $\mathsf{GSponge}$ called $\mathsf{Sponge2}$ capturing these micro-optimizations and provide a formal indifferentiability proof to establish both $\mathsf{Sponge2}$ and $\mathsf{GSponge}$'s security. This proof, simpler than the original for Sponges, offers clarity and ease of understanding for real-world practitioners. Additionally, it is demonstrated that $\mathsf{GSponge}$ can be safely instantiated with permutations defined over large prime fields, a result not previously formally proven.
Manuel Barbosa, François Dupressoir, Andreas Hülsing, Matthias Meijers, Pierre-Yves Strub
ePrint ReportOlivier Bernard, Marc Joye
ePrint ReportThis paper presents new CRT-based gadget decompositions for the approximate setting, which combines the advantages of non-exact decompositions with those of CRT-based decompositions. Significantly, it enables certain hardware or software realizations otherwise hardly supported like the two aforementioned cases. In particular, we show that our new gadget decompositions provide implementations of the (programmable) bootstrapping in TFHE relying solely on native arithmetic and offering extra degrees of parallelism.