International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

17 June 2024

Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik Sarkar, Sri AravindaKrishnan Thyagarajan
ePrint Report ePrint Report
Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services.

We present the $first$ formalization of on-chain verifiable randomness in the blockchain setting by introducing the notion of Verifiable Randomness as a Service (VRaaS). We formally define VRaaS using an ideal functionality $\mathcal{F}_{\sf VRaaS}$ in the Universal Composability model. Our definition not only captures the core features of randomness services, such as unbiasability, unpredictability, and public verifiability, but also accounts for many other crucial nuances pertaining to different entities involved, such as smart contracts.

Within our framework we study a generic design of Verifiable Random Function~(VRF)-based randomness service -- where the randomness requester provides an input on which the randomness is evaluated as VRF output. We show that it does satisfy our formal VRaaS definition. Furthermore, we show that the generic protocol captures many real-world randomness services like Chainlink VRF and Supra dVRF.

We investigate whether our definition is minimalistic in terms of the desired security properties - towards that, we show that a couple of insecure constructions fall short of realizing our definition. Using our definition we also discover practical vulnerabilities in other designs such as Algorand beacon, Pyth VRF and Band VRF that offer on-chain verifiable randomness.
Expand

14 June 2024

Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan
ePrint Report ePrint Report
We construct a succinct non-interactive argument (SNARG) system for every NP language $\mathcal{L}$ that has a propositional proof of non-membership for each $x\notin \mathcal{L}$. The soundness of our SNARG system relies on the hardness of the learning with errors (LWE) problem. The common reference string (CRS) in our construction grows with the space required to verify the propositional proof, and the size of the proof grows poly-logarithmically in the length of the propositional proof.

Unlike most of the literature on SNARGs, our result implies SNARGs for languages $\mathcal L$ with proof length shorter than logarithmic in the deterministic time complexity of $\mathcal L$. Our SNARG improves over prior SNARGs for such ``hard'' NP languages (Sahai and Waters, STOC 2014, Jain and Jin, FOCS 2022) in several ways:

- For languages with polynomial-length propositional proofs of non-membership, our SNARGs are based on a single, polynomial-time falsifiable assumption, namely LWE. - Our construction handles propositional proofs of super-polynomial length, as long as they have bounded space, under the subexponential LWE assumption. - Our SNARGs have a transparent setup, meaning that no private randomness is required to generate the CRS.

Moreover, our approach departs dramatically from these prior works: we show how to design SNARGs for hard languages without publishing a program (in the CRS) that has the power to verify $\mathsf{NP}$ witnesses.

The key new idea in our cryptographic construction is what we call a ``locally unsatisfiable extension'' of the $\mathsf{NP}$ verification circuit $\{C_x\}_x$. We say that an $\mathsf{NP}$ verifier has a locally unsatisfiable extension if for every $x\not\in \mathcal L$, there exists an extension $E_x$ of $C_x$ that is not even locally satisfiable in the sense of a local assignment generator [Paneth-Rothblum, TCC 2017]. Crucially, we allow $E_x$ to be depend arbitrarily on $x$ rather than being efficiently constructible.

In this work, we show -- via a ``hash-and-BARG'' for a hidden, encrypted computation -- how to build SNARGs for all languages with locally unsatisfiable extensions. We additionally show that propositional proofs of unsatisfiability generically imply the existence of locally unsatisfiable extensions, which allows us to deduce our main results.

As an illustrative example, our results imply a SNARG for the decisional Diffie-Hellman (DDH) language under the LWE assumption.
Expand
Josh Benaloh, Michael Naehrig, Olivier Pereira, Dan S. Wallach
ePrint Report ePrint Report
ElectionGuard is a flexible set of open-source tools that---when used with traditional election systems---can produce end-to-end verifiable elections whose integrity can be verified by observers, candidates, media, and even voters themselves. ElectionGuard has been integrated into a variety of systems and used in actual public U.S. elections in Wisconsin, California, Idaho, Utah, and Maryland as well as in caucus elections in the U.S. Congress. It has also been used for civic voting in the Paris suburb of Neuilly-sur-Seine and for an online election by a Switzerland/Denmark-based organization.

The principal innovation of ElectionGuard is the separation of the cryptographic tools from the core mechanics and user interfaces of voting systems. This separation allows the cryptography to be designed and built by security experts without having to re-invent and replace the existing infrastructure. Indeed, in its preferred deployment, ElectionGuard does not replace the existing vote counting infrastructure but instead runs alongside and produces its own independently-verifiable tallies. Although much of the cryptography in ElectionGuard is, by design, not novel, some significant innovations are introduced which greatly simplify the process of verification. This paper describes the design of ElectionGuard, its innovations, and many of the learnings from its implementation and growing number of real-world deployments.
Expand
Murdoch J. Gabbay
ePrint Report ePrint Report
We propose a compositional shallow translation from a first-order logic with equality, into polynomials; that is, we arithmetise the semantics of first-order logic. Using this, we can translate specifications of mathematically structured programming into polynomials, in a form amenable to succinct cryptographic verification.

We give worked example applications, and we propose a proof-of-concept succinct verification scheme based on inner product arguments.
Expand
Diego Castejon-Molina, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez
ePrint Report ePrint Report
A contingent payment protocol involves two mutually distrustful parties, a buyer and a seller, operating on the same blockchain, and a digital product, whose ownership is not tracked on a blockchain (e.g. a digital book, but not a NFT). The buyer holds coins on the blockchain and transfers them to the seller in exchange for the product. However, if the blockchain does not hide transaction details, any observer can learn that a buyer purchased some product from a seller. In this work, we take contingent payment a step further: we consider a buyer who wishes to buy a digital product from a seller routing the payment via an untrusted mixer. Crucially, we require that said payment is unlinkable, meaning that the mixer (or any other observer) does not learn which buyer is paying which seller. We refer to such setting as unlinkable contingent payment (UCP). We present MixBuy, a system that realizes UCP. Mixbuy relies on \emph{oracle-based unlinkable contingent payment} (O-UCP), a novel four-party cryptographic protocol where the mixer pays the seller and the seller provides the buyer with the product only if a semi-trusted notary attests that the buyer has paid the mixer. More specifically, we require four security notions: (i) mixer security that guarantees that if the mixer pays the seller, the intermediary must get paid from the buyer; (ii) seller security that guarantees that if the seller delivers the product to the buyer, the seller must get paid from the intermediary; (iii) buyer security that guarantees that if the buyer pays the intermediary, the buyer must obtain the product; and (iv) unlinkability that guarantees that given a set of buyers and sellers, the intermediary should not learn which buyer paid which seller.

We present a provably secure and efficient cryptographic construction for O-UCP. Our construction can be readily used to realize UCP on most blockchains, as it has minimal functionality requirements (i.e., digital signatures and timelocks). To demonstrate the practicality of our construction, we provide a proof of concept for O-UCP and our benchmarks in commodity hardware show that the communication overhead is small (a few kB per message) and the running time is below one second.
Expand
Benny Applebaum, Kaartik Bhushan, Manoj Prabhakaran
ePrint Report ePrint Report
In this note, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any $I$-round interactive protocol that uses $\rho$ random bits into another one for the same problem with the additional property that the verifier's communication is bounded by $O(I\cdot \rho)$. Importantly, this is done with a minor, logarithmic, increase in the communication from the prover to the verifier and while preserving the randomness complexity. Along the way, we introduce a new compression game between computationally-bounded compressor and computationally-unbounded decompressor and a new notion of conditioned efficient distributions that may be of independent interest. Our solutions are based on a combination of perfect hashing and pseudorandom generators.
Expand
Alexander Maximov
ePrint Report ePrint Report
In this short paper we share our experience on instantiating the width-extension construct TLR3, based on a variety of tweakable block cipher constructs. As many of our attempts failed, we highlight the complexity of getting a practical tweakable block cipher and the gap between theory and practice.
Expand
Xiangfu Song, Yu Zheng, Jianli Bai, Changyu Dong, Zheli Liu, Ee-Chien Chang
ePrint Report ePrint Report
Dynamic searchable encryption (DSE) with forward and backward privacy reduces leakages in early-stage schemes. Security enhancement comes with a price -- maintaining updatable keyword-wise state information. State information, if stored locally, incurs significant client-side storage overhead for keyword-rich datasets, potentially hindering real-world deployments.

We propose DISCO, a simple and efficient framework for designing DSE schemes using constant client state. DISCO combines range-constrained pseudorandom functions (RCPRFs) over a global counter and leverages nice properties from the underlying primitives and index structure to simultaneously achieve forward-and-backward privacy and constant client state. To configure DISCO concretely, we identify a set of RCPRF properties that are vital for the resulting DISCO instantiations. By configuring DISCO with different RCPRFs, we resolve efficiency and usability issues in existing schemes. We further optimize DISCO's concrete efficiency without downgrading security. We implement DISCO constructions and report performance, showing trade-offs from different DISCO constructions. Besides, we compare the practical efficiency of DISCO with existing non-constant-state DSE schemes, demonstrating DISCO's competitive efficiency.
Expand
Tianpei Lu, Xin Kang, Bingsheng Zhang, Zhuo Ma, Xiaoyuan Zhang, Yang Liu, Kui Ren
ePrint Report ePrint Report
Secure equality testing and comparison are two important primitives that have been widely used in many secure computation scenarios, such as privacy-preserving machine learning, private set intersection, secure data mining, etc. In this work, we propose new constant-round two-party computation (2PC) protocols for secure equality testing and secure comparison. Our protocols are designed in the online/offline paradigm. Theoretically, for 32-bit integers, the online communication for our equality testing is only 76 bits, and the cost for our secure comparison is only 384 bits.Our benchmarks show that (i) our equality is $9 \times$ faster than the Guo \emph{et al.} (EUROCRYPT 2023) and $15 \times$ of the garbled circuit scheme (EMP-toolkit). (ii) our secure comparison protocol is $3 \times$ faster than Guo et al.(EUROCRYPT 2023), $6 \times$ faster than both Rathee et al. (CCS 2020) and garbled circuit scheme.
Expand

13 June 2024

Maria Corte-Real Santos, Krijn Reijnders
ePrint Report ePrint Report
This work expands the machinery we have for isogeny-based cryptography in genus 2 by developing a toolbox of several essential algorithms for Kummer surfaces, the dimension 2 analogue of x-only arithmetic on elliptic curves. Kummer surfaces have been suggested in (hyper-)elliptic curve cryptography since at least the 1980s and recently these surfaces have reappeared to efficiently compute (2,2)-isogenies. We construct several essential analogues of techniques used in one-dimensional isogeny-based cryptography, such as pairings, deterministic point sampling and point compression and give an overview of (2,2)-isogenies on Kummer surfaces. We furthermore show how Scholten's construction can be used to transform isogeny-based cryptography over elliptic curves over $\mathbb{F}_{p^2}$ into protocols over Kummer surfaces over $\mathbb{F}_p$.

As an example of this approach, we demonstrate that SQIsign verification can be performed completely on Kummer surfaces, and, therefore, that one-dimensional SQIsign verification can be viewed as a two-dimensional isogeny between products of elliptic curves. Curiously, the isogeny is then defined over $\mathbb{F}_p$ rather than $\mathbb{F}_{p^2}$. Contrary to expectation, the cost of SQIsign verification using Kummer surfaces does not explode: verification costs only 1.5 times more in terms of finite field operations than the SQIsign variant AprèsSQI, optimised for fast verification. Furthermore, as Kummer surfaces allow a much higher degree of parallelization, Kummer-based protocols over $\mathbb{F}_p$ could potentially outperform elliptic curve analogues over $\mathbb{F}_{p^2}$ in terms of clock cycles and actual performance.
Expand
Nuttapong Attrapadung, Junichi Tomida
ePrint Report ePrint Report
Registered attribute-based encryption (Reg-ABE), introduced by Hohenberger et al. (Eurocrypt’23), emerges as a pivotal extension of attribute-based encryption (ABE), aimed at mitigating the key-escrow problem. Although several Reg-ABE schemes with black-box use of cryptography have been proposed so far, there remains a significant gap in the class of achievable predicates between vanilla ABE and Reg-ABE. To narrow this gap, we propose a modular framework for constructing Reg-ABE schemes for a broader class of predicates. Our framework is a Reg-ABE analog of the predicate transformation framework for ABE introduced by Attrapadung (Eurocrypt’19) and later refined by Attrapadung and Tomida (Asiacrypt’20) to function under the standard MDDH assumption. As immediate applications, our framework implies the following new Reg-ABE schemes under the standard MDDH assumption: – the first Reg-ABE scheme for (non-)monotone span programs with the traditional completely unbounded property. – the first Reg-ABE scheme for general non-monotone span programs (also with the completely unbounded property) as defined in the case of vanilla ABE by Attrapadung and Tomida (Asiacrypt’20). Here, the term “completely unbounded” signifies the absence of restrictions on attribute sets for users and policies associated with ciphertexts. From a technical standpoint, we first substantially modify pair encoding schemes (PES), originally devised for vanilla ABE by Attrapadung (Eurocrypt’14), to make them compatible with Reg-ABE. Subsequently, we present a series of predicate transformations through which we can construct complex predicates, particularly those with an “unbounded” characteristic, starting from simple ones. Finally, we define new properties of PES necessary for constructing Reg-ABE schemes and prove that these properties are preserved through the transformations. This immediately implies that we can obtain Reg-ABE schemes for any predicates derived via predicate transformations.
Expand
Edward Eaton, Philippe Lamontagne, Peter Matsakis
ePrint Report ePrint Report
This work presents the first provably secure protocol for Butterfly Key Expansion (BKE) -- a tripartite protocol for provisioning users with pseudonymous certificates -- based on post-quantum cryptographic schemes. Our work builds upon the CRYSTALS family of post-quantum algorithms that have been selected for standardization by NIST. We extend those schemes by imbuing them with the additional functionality of public key expansion: a process by which pseudonymous public keys can be derived by a single public key. Our work is the most detailed analysis yet of BKE: we formally define desired properties of BKE -- unforgeability and unlinkability -- as cryptographic games, and prove that BKE implemented with our modified CRYSTALS schemes satisfy those properties. We implemented our scheme by modifying the Kyber and Dilithium algorithms from the LibOQS project, and we report on our parameter choices and the performance of the schemes.
Expand
Sathvika Balumuri, Edward Eaton, Philippe Lamontagne
ePrint Report ePrint Report
Key blinding produces pseudonymous digital identities by rerandomizing public keys of a digital signature scheme. It is used in anonymous networks to provide the seemingly contradictory goals of anonymity and authentication. Current key blinding schemes are based on the discrete log assumption. Eaton, Stebila and Stracovsky (LATINCRYPT 2021) proposed the first key blinding schemes from lattice assumptions. However, the large public keys and lack of QROM security means they are not ready to replace existing solutions.

We present a new way to build key blinding schemes form any MPC-in-the-Head signature scheme. These schemes rely on well-studied symmetric cryptographic primitives and admit short public keys. We prove a general framework for constructing key blinding schemes and for proving their security in the quantum random oracle model (QROM).

We instantiate our framework with the recent AES-based Helium signature scheme (Kales and Zaverucha, 2022). Blinding Helium only adds a minor overhead to the signature and verification time. Both Helium and the aforementioned lattice-based key blinding schemes were only proven secure in the ROM. This makes our results the first QROM proof of Helium and the first fully quantum-safe public key blinding scheme.
Expand
Navid Alamati, Varun Maram
ePrint Report ePrint Report
Security against chosen-ciphertext attacks (CCA) concerns privacy of messages even if the adversary has access to the decryption oracle. While the classical notion of CCA security seems to be strong enough to capture many attack scenarios, it falls short of preserving the privacy of messages in the presence of quantum decryption queries, i.e., when an adversary can query a superposition of ciphertexts.

Boneh and Zhandry (CRYPTO 2013) defined the notion of quantum CCA (qCCA) security to guarantee privacy of messages in the presence of quantum decryption queries. However, their construction is based on an exotic cryptographic primitive (namely, identity-based encryption with security against quantum queries), for which only one instantiation is known. In this work, we comprehensively study qCCA security for public-key encryption (PKE) based on both generic cryptographic primitives and concrete assumptions, yielding the following results:

* We show that key-dependent message secure encryption (along with PKE) is sufficient to realize qCCA-secure PKE. This yields the first construction of qCCA-secure PKE from the LPN assumption.

* We prove that hash proof systems imply qCCA-secure PKE, which results in the first instantiation of PKE with qCCA security from (isogeny-based) group actions.

* We extend the notion of adaptive TDFs (ATDFs) to the quantum setting by introducing quantum ATDFs, and we prove that quantum ATDFs are sufficient to realize qCCA-secure PKE. We also show how to instantiate quantum ATDFs from the LWE assumption.

* We show that a single-bit qCCA-secure PKE is sufficient to realize a multi-bit qCCA-secure PKE by extending the completeness of bit encryption for CCA security to the quantum setting.
Expand
Chaya Ganesh, Vineet Nair, Ashish Sharma
ePrint Report ePrint Report
We introduce a primitive called a dual polynomial commitment scheme that allows linking together a witness committed to using a univariate polynomial commitment scheme with a witness inside a multilinear polynomial commitment scheme. This yields commit-and-prove (CP) SNARKs with the flexibility of going back and forth between univariate and multilinear encodings of witnesses. This is in contrast to existing CP frameworks that assume compatible polynomial commitment schemes between different component proofs systems. In addition to application to CP, we also show that our notion yields a version of Spartan with better proof size and verification complexity, at the cost of a more expensive prover.

We achieve this via a combination of the following technical contributions: (i) we construct a new univariate commitment scheme in the updatable SRS setting that has better prover complexity than KZG (ii) we construct a new multilinear commitment scheme in the updatable setting that is compatible for linking with our univariate scheme (iii) we construct an argument of knowledge to prove a given linear relationship between two witnesses committed using a two-tiered commitment scheme (Pedersen+AFG) using Dory as a black-box. These constructions are of independent interest.

We implement our commitment schemes and report on performance. We also implement the version of Spartan with our dual polynomial commitment scheme and demonstrate that it outperforms Spartan in proof size and verification complexity.
Expand
Riccardo Taiello, Melek Önen, Clémentine Gritti, Marco Lorenzi
ePrint Report ePrint Report
Secure Aggregation (SA) stands as a crucial component in modern Federated Learning (FL) systems, facilitating collaborative training of a global machine learning model while protecting the privacy of individual clients' local datasets. Many existing SA protocols described in the FL literature operate synchronously, leading to notable runtime slowdowns due to the presence of stragglers (i.e. late-arriving clients). To address this challenge, one common approach is to consider stragglers as client failures and use SA solutions that are robust against dropouts. While this approach indeed seems to work, it unfortunately affects the performance of the protocol as its cost strongly depends on the dropout ratio and this ratio has increased significantly when taking stragglers into account. Another approach explored in the literature to address stragglers is to introduce asynchronicity into the FL system. Very few SA solutions exist in this setting and currently suffer from high overhead. In this paper, similar to related work, we propose to handle stragglers as client failures but design SA solutions that do not depend on the dropout ratio so that an unavoidable increase on this metric does not affect the performance of the solution. We first introduce Eagle, a synchronous SA scheme designed not to depend on the client failures but on the online users' inputs only. This approach offers better computation and communication costs compared to existing solutions under realistic settings where the number of stragglers is high. We then propose Owl, the first SA solution that is suitable for the asynchronous setting and once again considers online clients' contributions only. We implement both solutions and show that: (i) in a synchronous FL with realistic dropout rates (taking potential stragglers into account), Eagle outperforms the best SA solution, namely Flamingo, by X4; (ii) In the asynchronous setting, Owl exhibits the best performance compared to the state-of-the-art solution LightSecAgg.
Expand
King's College London
Job Posting Job Posting

The candidate will work alongside Prof. Martin Albrecht, Dr. Benjamin Dowling, Dr. Rikke Bjerg Jensen (Royal Holloway University of London) and Dr. Andrea Medrado (Exeter) on establishing social foundations of cryptography in protest settings. In particular, the candidate will work with a multi-disciplinary team of cryptographers (Dowling, Albrecht) and ethnographers (Jensen, Medrado) to understand the security needs of participants in protests, to formalise these needs as cryptographic security notions and to design or analyse cryptographic solutions with respect to these notions.

This position is part of the EPSRC-funded project “Social Foundations of Cryptography” and more information is available at https://social-foundations-of-cryptography.gitlab.io/.

In brief, ethnography is a social science method involving prolonged fieldwork, i.e. staying with the group under study, to observe not only what they say but also what their social reality and practice is. In this project, we are putting cryptography at the mercy of ethnographic findings, allowing them to shape what we model.

Closing date for applications:

Contact: Martin Albrecht <martin.albrecht@kcl.ac.uk>

More information: https://martinralbrecht.wordpress.com/2024/06/11/cryptography-postdoc-position-in-social-foundations-of-cryptography/

Expand

12 June 2024

Xuanming Liu, Jiawen Zhang, Yinghao Wang, Xinpeng Yang, Xiaohu Yang
ePrint Report ePrint Report
The trading of data is becoming increasingly important as it holds substantial value. A blockchain-based data marketplace can provide a secure and transparent platform for data exchange. To facilitate this, developing a fair data exchange protocol for digital goods has garnered considerable attention in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in a practical data marketplace is not trivial.

In this paper, several potential attacks are identified when applying the ZKCP protocol in a practical public data marketplace. To address these issues, we propose SmartZKCP, an enhanced solution that offers improved security measures and increased performance. The protocol is formalized to ensure fairness and secure against potential attacks. Moreover, SmartZKCP offers efficiency optimizations and minimized communication costs. Evaluation results show that SmartZKCP is both practical and efficient, making it applicable in a data exchange marketplace.
Expand
Xuanming Liu, Zhelei Zhou, Yinghao Wang, Jinye He, Bingsheng Zhang, Xiaohu Yang, Jiaheng Zhang
ePrint Report ePrint Report
Collaborative zk-SNARK (USENIX'22) allows multiple parties to jointly create a zk-SNARK proof over distributed secrets (also known as the witness). It provides a promising approach to proof outsourcing, where a client wishes to delegate the tedious task of proof generation to many servers from different locations, while ensuring no corrupted server can learn its witness (USENIX'23). Unfortunately, existing work remains a significant efficiency problem, as the protocols rely heavily on a particularly powerful server, and thus face challenges in achieving scalability for complex applications.

In this work, we address this problem by extending the existing zk-SNARKs Libra (Crypto'19) and HyperPlonk (Eurocrypt'23) into scalable collaborative zk-SNARKs. Crucially, our collaborative proof generation does not require a powerful server, and all servers take up roughly the same proportion of the total workload. In this way, we achieve privacy and scalability simultaneously for the first time in proof outsourcing. To achieve this, we develop an efficient MPC toolbox for a number of useful multivariate polynomial primitives, including sumcheck, productcheck, and multilinear polynomial commitment, which can also be applied to other applications as independent interests. For proof outsourcing purposes, when using $128$ servers to jointly generate a proof for a circuit size of $2^{24}$ gates, our benchmarks for these two collaborative proofs show a speedup of $21\times$ and $24\times$ compared to a local prover, respectively. Furthermore, we are able to handle enormously large circuits, making it practical for real-world applications.
Expand
A. Telveenus
ePrint Report ePrint Report
The cryptosystem RSA is a very popular cryptosystem in the study of Cryptography. In this article, we explore how the idea of a primitive m th root of unity in a ring can be integrated into the Discrete Fourier Transform, leading to the development of new cryptosystems known as RSA-DFT and RSA-HGR.
Expand
◄ Previous Next ►