International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

30 September 2024

Jeongeun Park, Barry Van Leeuwen, Oliver Zajonc
ePrint Report ePrint Report
Multi-key fully homomorphic encryption (MKFHE), a generalization of fully homomorphic encryption (FHE), enables a computation over encrypted data under multiple keys. The first MKFHE schemes were based on the NTRU primitive, however these early NTRU based FHE schemes were found to be insecure due to the problem of over-stretched parameters. Recently, in the case of standard (non-multi key) FHE a secure version, called FINAL, of NTRU has been found. In this work we extend FINAL to an MKFHE scheme, this allows us to benefit from some of the performance advantages provided by NTRU based primitives. Thus, our scheme provides competitive performance against current state-of-the-art multi-key TFHE, in particular reducing the computational complexity from quadratic to linear in the number of keys.
Expand
Thomas Schneider, Ajith Suresh, Hossein Yalame
ePrint Report ePrint Report
In August 2021, Liu et al. (IEEE TIFS'21) proposed a privacy-enhanced framework named PEFL to efficiently detect poisoning behaviours in Federated Learning (FL) using homomorphic encryption. In this article, we show that PEFL does not preserve privacy. In particular, we illustrate that PEFL reveals the entire gradient vector of all users in clear to one of the participating entities, thereby violating privacy. Furthermore, we clearly show that an immediate fix for this issue is still insufficient to achieve privacy by pointing out multiple flaws in the proposed system.
Expand
Masayuki Abe, Masaya Nanri, Miyako Ohkubo, Octavio Perez Kempner, Daniel Slamanig, Mehdi Tibouchi
ePrint Report ePrint Report
A mix network, or mixnet, is a cryptographic tool for anonymous routing, taking messages from multiple (identifiable) senders and delivering them in a randomly permuted order. Traditional mixnets employ encryption and proofs of correct shuffle to cut the link between each sender and their input.

Hébant et al. (PKC '20) introduced a novel approach to scalable mixnets based on linearly homomorphic signatures. Unfortunately, their security model is too weak to support voting applications. Building upon their work, we leverage recent advances in equivalence class signatures, replacing linearly homomorphic signatures to obtain more efficient mixnets with security in a more robust model. More concretely, we introduce the notion of mercurial signatures on randomizable ciphertexts along with an efficient construction, which we use to build a scalable mixnet protocol suitable for voting. We compare our approach to other (scalable) mixnet approaches, implement our protocols, and provide concrete performance benchmarks. Our findings show our mixnet significantly outperforms existing alternatives in efficiency and scalability. Verifying the mixing process for 50k ciphertexts takes 135 seconds on a commodity laptop (without parallelization) when employing ten mixers.
Expand
HyunHo Cha, Intak Hwang, Seonhong Min, Jinyeong Seo, Yongsoo Song
ePrint Report ePrint Report
The SPDZ protocol family is a popular choice for secure multi-party computation (MPC) in a dishonest majority setting with active adversaries. Over the past decade, a series of studies have focused on improving its offline phase, where special additive shares, called authenticated triples, are generated. However, to accommodate recent demands for matrix operations in secure machine learning and big integer arithmetic in distributed RSA key generation, updates to the offline phase are required.

In this work, we propose a new protocol for the SPDZ offline phase, TopGear 2.0, which improves upon the previous state-of-the-art construction, TopGear (Baum et al., SAC'19), and its variant for matrix triples (Chen et al., Asiacrypt'20). Our protocol aims to achieve a speedup in matrix triple generation and support for larger prime fields, up to 4096 bits in size. To achieve this, we employ a variant of the BFV scheme and a homomorphic matrix multiplication algorithm optimized for our purpose.

As a result, our protocol achieves about 3.6x speedup for generating scalar triples in a 1024-bit prime field and about 34x speedup for generating 128x128 matrix triples. In addition, we reduce the size of evaluation keys from 27.4 GB to 0.22 GB and the communication cost for MAC key generation from 816 MB to 16.6 MB.
Expand
Molly Zhuangtong Huang, Rui Jiang, Tanusree Sharma, Kanye Ye Wang
ePrint Report ePrint Report
In the rapidly evolving Web3 ecosystem, transparent auditing has emerged as a critical component for both applications and users. However, there is a significant gap in understanding how users perceive this new form of auditing and its implications for Web3 security. Utilizing a mixed-methods approach that incorporates a case study, user interviews, and social media data analysis, our study leverages a risk perception model to comprehensively explore Web3 users' perceptions regarding information accessibility, the role of auditing, and its influence on user behavior. Based on these extensive findings, we discuss how this open form of auditing is shaping the security of the Web3 ecosystem, identifying current challenges, and providing design implications.
Expand
Luowen Qian, Justin Raizes, Mark Zhandry
ePrint Report ePrint Report
Although one-way functions are well-established as the minimal primitive for classical cryptography, a minimal primitive for quantum cryptography is still unclear. Universal extrapolation, first considered by Impagliazzo and Levin (1990), is hard if and only if one-way functions exist. Towards better understanding minimal assumptions for quantum cryptography, we study the quantum analogues of the universal extrapolation task. Specifically, we put forth the classical$\rightarrow$quantum extrapolation task, where we ask to extrapolate the rest of a bipartite pure state given the first register measured in the computational basis. We then use it as a key component to establish new connections in quantum cryptography: (a) quantum commitments exist if classical$\rightarrow$quantum extrapolation is hard; and (b) classical$\rightarrow$quantum extrapolation is hard if any of the following cryptographic primitives exists: quantum public-key cryptography (such as quantum money and signatures) with a classical public key or 2-message quantum key distribution protocols.

For future work, we further generalize the extrapolation task and propose a fully quantum analogue. We observe that it is hard if quantum commitments exist, and it is easy for quantum polynomial space.
Expand
Suvasree Biswas, Arkady Yerukhimovich
ePrint Report ePrint Report
Homomorphic message authenticators allow a user to perform computation on previously authenticated data producing a tag $\sigma$ that can be used to verify the authenticity of the computation. We extend this notion to consider a multi-party setting where we wish to produce a tag that allows verifying (possibly different) computations on all party's data at once. Moreover, the size of this tag should not grow as a function of the number of parties or the complexity of the computations. We construct the first aggregate homomorphic MAC scheme that achieves such aggregation of homomorphic tags. Moreover, the final aggregate tag consists of only a single group element. Our construction supports aggregation of computations that can be expressed by bounded-depth arithmetic circuits and is secure in the random oracle model based on the hardness of the Computational Co-Diffie-Hellman problem over an asymmetric bilinear map.
Expand
Federico Barbacovi, Enrique Larraia, Paul Germouty, Wei Zhang
ePrint Report ePrint Report
Groth16 is a pairing-based zero-knowledge proof scheme that has a constant proof size and an efficient verification algorithm. Bitcoin Script is a stack-based low-level programming language that is used to lock and unlock bitcoins. In this paper, we present a practical implementation of the Groth16 verifier in Bitcoin Script deployable on the mainnet of a Bitcoin blockchain called BSV. Our result paves the way for a framework of verifiable computation on Bitcoin: a Groth16 proof is generated for the correctness of an off-chain computation and is verified in Bitcoin Script on-chain. This approach not only offers privacy but also scalability. Moreover, this approach enables smart contract capability on Bitcoin which was previously thought rather limited if not non-existent.
Expand
Andrej Bogdanov, Chris Jones, Alon Rosen, Ilias Zadik
ePrint Report ePrint Report
The planted random subgraph detection conjecture of Abram et al. (TCC 2023) asserts the pseudorandomness of a pair of graphs $(H, G)$, where $G$ is an Erdos-Renyi random graph on $n$ vertices, and $H$ is a random induced subgraph of $G$ on $k$ vertices. Assuming the hardness of distinguishing these two distributions (with two leaked vertices), Abram et al. construct communication-efficient, computationally secure (1) 2-party private simultaneous messages (PSM) and (2) secret sharing for forbidden graph structures.

We prove the low-degree hardness of detecting planted random subgraphs all the way up to $k\leq n^{1 - \Omega(1)}$. This improves over Abram et al.'s analysis for $k \leq n^{1/2 - \Omega(1)}$. The hardness extends to $r$-uniform hypergraphs for constant $r$.

Our analysis is tight in the distinguisher's degree, its advantage, and in the number of leaked vertices. Extending the constructions of Abram et al, we apply the conjecture towards (1) communication-optimal multiparty PSM protocols for random functions and (2) bit secret sharing with share size $(1 + \epsilon)\log n$ for any $\epsilon > 0$ in which arbitrary minimal coalitions of up to $r$ parties can reconstruct and secrecy holds against all unqualified subsets of up to $\ell = o(\epsilon \log n)^{1/(r-1)}$ parties.
Expand
Jianting Zhang, Aniket Kate
ePrint Report ePrint Report
Frontrunning is rampant in blockchain ecosystems, yielding attackers profits that have already soared into several million. Most existing frontrunning attacks focus on manipulating transaction order (namely, prioritizing attackers' transactions before victims' transactions) $\textit{within}$ a block. However, for the emerging directed acyclic graph (DAG)-based blockchains, these intra-block frontrunning attacks may not fully reveal the frontrunning vulnerabilities as they introduce block ordering rules to order transactions belonging to distinct blocks.

This work performs the first in-depth analysis of frontrunning attacks toward DAG-based blockchains. We observe that the current block ordering rule is vulnerable to a novel $\textit{inter-block}$ frontrunning attack, which enables the attacker to prioritize ordering its transactions before the victim transactions across blocks. We introduce three attacking strategies: $\textit{(i)}$ Fissure attack, where attackers render the victim transactions ordered later by disconnecting the victim's blocks. $\textit{(ii)}$ Speculative attack, where attackers speculatively construct order-priority blocks. $\textit{(iii)}$ Sluggish attack, where attackers deliberately create low-round blocks assigned a higher ordering priority by the block ordering rule.

We implement our attacks on two open-source DAG-based blockchains, Bullshark and Tusk. We extensively evaluate our attacks in geo-distributed AWS and local environments by running up to $n=100$ nodes. Our experiments show remarkable attack effectiveness. For instance, with the speculative attack, the attackers can achieve a $92.86\%$ attack success rate (ASR) on Bullshark and an $86.27\%$ ASR on Tusk. Using the fissure attack, the attackers can achieve a $94.81\%$ ASR on Bullshark and an $87.31\%$ ASR on Tusk.

We also discuss potential countermeasures for the proposed attack, such as ordering blocks randomly and reordering transactions globally based on transaction fees. However, we find that they either compromise the performance of the system or make the protocol more vulnerable to frontrunning using the existing frontrunning strategies.
Expand
Anna-Lena Horlemann, Karan Khathuria, Marc Newman, Amin Sakzad, Carlos Vela Cabello
ePrint Report ePrint Report
Post-quantum cryptography has gained attention due to the need for secure cryptographic systems in the face of quantum computing. Code-based and lattice-based cryptography are two promi- nent approaches, both heavily studied within the NIST standardization project. Code-based cryptography—most prominently exemplified by the McEliece cryptosystem—is based on the hardness of decoding random linear error-correcting codes. Despite the McEliece cryptosystem having been unbroken for several decades, it suffers from large key sizes, which has led to exploring variants using metrics than the Hamming metric, such as the Lee metric. This alternative metric may allow for smaller key sizes, but requires further analysis for potential vulnerabilities to lattice- based attack techniques. In this paper, we consider a generic Lee met- ric based McEliece type cryptosystem and evaluate its security against lattice-based attacks.
Expand
Gowri R Chandran, Thomas Schneider, Maximilian Stillger, Christian Weinert
ePrint Report ePrint Report
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist. However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU): For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead.

In this work, we present the first PSU protocol that is mainly based on efficient symmetric-key primitives yet enjoys comparable communication as public-key-based alternatives. Our core idea is to re-purpose state-of-the-art circuit-based PSI to realize a multi-query reverse private membership test (mq-RPMT), which is instrumental for building PSU. We carefully analyze a privacy leakage issue resulting from the hashing paradigm commonly utilized in circuit-based PSI and show how to mitigate this via oblivious pseudorandom function (OPRF) and new shuffle sub-protocols. Our protocol is modularly designed as a sequential execution of different building blocks that can be easily replaced by more efficient variants in the future, which will directly benefit the overall performance.

We implement our resulting PSU protocol, showing a run-time improvement of 10% over the state-of-the-art public-key-based protocol of Chen et al. (PKC'24) for input sets of size $2^{20}$. Furthermore, we improve communication by $1.6\times$ over the state-of-the-art symmetric-key-based protocol of Zhang et al. (USENIX Sec'23).
Expand
Noor Athamnah, Eden Florentz – Konopnicki, Ron D. Rothblum
ePrint Report ePrint Report
We show that every NP relation that can be verified by a bounded-depth polynomial-sized circuit, or a bounded-space polynomial-time algorithm, has a computational zero-knowledge proof (with statistical soundness) with communication that is only additively larger than the witness length. Our construction relies only on the minimal assumption that one-way functions exist. In more detail, assuming one-way functions, we show that every NP relation that can be verified in NC has a zero-knowledge proof with communication $|w|+poly(\lambda,\log(|x|))$ and relations that can be verified in SC have a zero-knowledge proof with communication $|w|+|x|^\epsilon \cdot poly(\lambda)$. Here $\epsilon>0$ is an arbitrarily small constant and \lambda denotes the security parameter. As an immediate corollary, we also get that any NP relation, with a size S verification circuit (using unbounded fan-in XOR, AND and OR gates), has a zero-knowledge proof with communication $S+poly(\lambda,\log(S))$.

Our result improves on a recent result of Nassar and Rothblum (Crypto, 2022), which achieve length $(1+\epsilon) \cdot |w|+|x|^\epsilon \cdot poly(\lambda)$ for bounded-space computations, and is also considerably simpler. Building on a work of Hazay et al. (TCC 2023), we also give a more complicated version of our result in which the parties only make a black-box use of the one-way function, but in this case we achieve only an inverse polynomial soundness error.
Expand
Zhengan Huang, Gongxian Zeng, Xin Mu, Yu Wang, Yue Yu
ePrint Report ePrint Report
In this paper, we initiate the study of multi-designated detector watermarking (MDDW) for large language models (LLMs). This technique allows model providers to generate watermarked outputs from LLMs with two key properties: (i) only specific, possibly multiple, designated detectors can identify the watermarks, and (ii) there is no perceptible degradation in the output quality for ordinary users. We formalize the security definitions for MDDW and present a framework for constructing MDDW for any LLM using multi-designated verifier signatures (MDVS). Recognizing the significant economic value of LLM outputs, we introduce claimability as an optional security feature for MDDW, enabling model providers to assert ownership of LLM outputs within designated-detector settings. To support claimable MDDW, we propose a generic transformation converting any MDVS to a claimable MDVS. Our implementation of the MDDW scheme highlights its advanced functionalities and flexibility over existing methods, with satisfactory performance metrics.
Expand

27 September 2024

Copenhagen, Denmark, 26 December - 27 December 2024
Event Calendar Event Calendar
Event date: 26 December to 27 December 2024
Submission deadline: 27 September 2024
Notification: 27 October 2024
Expand
Nanyang Technological University, Singapore
Job Posting Job Posting
The College of Science seeks a diverse and inclusive workforce and is committed to equality of opportunity. We welcome applications from all and recruit on the basis of merit, regardless of age, race, gender, religion, marital status and family responsibilities, or disability. The Division of Mathematical Sciences in the School of Physical and Mathematical Sciences at NTU provides a multidisciplinary academic program that provides students with a wide-ranging and up-to-date education. The Division of Mathematical Sciences invites applications for an Asst/Assoc Prof (Tenure Track/Tenured) position specializing in Post-Quantum Cryptography (PQC).

Closing date for applications:

Contact: MAS_Search@ntu.edu.sg

More information: https://ntu.wd3.myworkdayjobs.com/Careers/job/NTU-Main-Campus-Singapore/Assistant-Professor-Associate-Professor--Tenure-Track-Tenured--in-Post-Quantum-Cryptography--PQC-_R00018013

Expand
University of South Florida
Job Posting Job Posting
The USF Center for Cryptographic Research is recruiting 3 postdoctoral fellows and 3 graduate students to work on Applied Algebra. Our program focuses on the following topics:
  • Cryptology
  • Coding Theory
  • Quantum Computing
Candidates whose research intersects multiple topics of interest are particularly encouraged to apply. Successful candidates will be hosted by the USF Department of Mathematics and Statistics. All candidates must be U.S. citizens or U.S. Permanent Residents (i.e. Green Card holders). The additional minimum qualifications are
  • Postdoctoral: a PhD in mathematics, computer science, or a related field.
  • Graduate students: a bachelor’s degree in mathematics, or evidence of completion of coursework in algebra, analysis and topology.
The start date is negotiable, but needs to be before the start of the Fall 2025 semester.

Our program is supported by an NSF Research Training Group (RTG) grant. More information about our RTG program is available at:
usf-crypto.org/rtg-overview/

Applications will be reviewed on a rolling basis. We encourage all potential applicants to visit our applications page which includes a simplified procedure through an interest form:
usf-crypto.org/rtg-application/

Closing date for applications:

Contact: Jean-François Biasse (biasse@usf.edu)

More information: https://www.usf-crypto.org/rtg-application/

Expand
Eindhoven University of Technology
Job Posting Job Posting
Topics: Quantum Readout of Physical Unclonable Functions; Use of PUFs in quantum-cryptographic protocols.

The project focuses on the use of PUFs as a physical authentication credential, and in particular Quantum Readout of PUFs, which enables remote authentication of physical credentials without the need to trust remote devices.

https://arxiv.org/abs/1303.0142
https://export.arxiv.org/abs/1802.07573
https://eprint.iacr.org/2016/971

One of the goals is to achieve Quantum Readout through a long optical fiber, with random challenges in the time-frequency domain (instead of the easier to achieve transverse modes domain). You will be involved in the system modeling, the design of protocols, and the security analysis.
A broader topic of interest is the use of PUFs in (quantum) security schemes in general.

We are looking for a researcher with strong analytical skills, with a master's degree in theoretical physics, cryptography, or a related field.

The research is done at the Eindhoven Institute for the Protection of Systems and Information (EIPSI), in the department of Mathematics and Computer Science. There is a strong collaboration with the TU/e's fiber optics experts at the department of Electrical Engineering, and with physicists at Twente University.

This position is part of the Dutch Zwaartekracht program "Challenges in Cyber Security", which aims to address fundamental open problems in digital security.

Closing date for applications:

Contact: Boris Skoric

More information: https://jobs.tue.nl/nl/vacature/phd-on-physical-unclonable-functions-and-quantum-cryptography-1111069.html?_gl=1*1gre9ml*_up*MQ..*_ga*MTc5ODEzOTE3Ny4xNzI3MTkyODc0*_ga_JN37M497TT*MTcyNzE5Mjg3NC4xLjAuMTcyNzE5Mjg3NC4wLjAuMA

Expand

24 September 2024

Zhengjun Cao, Lihua Liu
ePrint Report ePrint Report
Peer-to-peer communication systems can provide many functions, including anonymized routing of network traffic, massive parallel computing environments, and distributed storage. Anonymity refers to the state of being completely nameless, with no attached identifiers. Pseudonymity involves the use of a fictitious name that can be consistently linked to a particular user, though not necessarily to the real identity. Both provide a layer of privacy, shielding the user's true identity from public view. But we find their significations are often misunderstood. In this note, we clarify the differences between anonymity and pseudonymity. We also find the Zhong et al.'s key agreement scheme [IEEE TCC, 2022, 10(3), 1592-1603] fails to keep anonymity, not as claimed.
Expand
Dakshita Khurana, Kabir Tomer
ePrint Report ePrint Report
Recent oracle separations [Kretschmer, TQC'21, Kretschmer et. al., STOC'23] have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if the polynomial heirarchy collapses. We realize this possibility by building quantum bit commitments and secure computation from unrelativized, well-studied mathematical problems that are conjectured to be hard for $\mathsf{P}^{\#\mathsf{P}}$ -- such as approximating the permanents of complex gaussian matrices, or approximating the output probabilities of random quantum circuits. Indeed, we show that as long as \any one of the conjectures underlying sampling-based quantum advantage (e.g., BosonSampling, Random Circuit Sampling, IQP, etc.) is true, quantum cryptography can be based on the extremely mild assumption that $\mathsf{P}^{\#\mathsf{P}} \not\subseteq \mathsf{(io)BQP}/\mathsf{qpoly}$. Our techniques uncover strong connections between the hardness of approximating the probabilities of outcomes of quantum processes, the existence of ``one-way'' state synthesis problems, and the existence of useful cryptographic primitives such as one-way puzzles and quantum bit commitments. Specifically, we prove that the following hardness assumptions are equivalent under $\mathsf{BQP}$ reductions. 1. The hardness of approximating the probabilities of outcomes of certain efficiently sampleable distributions. That is, there exist quantumly efficiently sampleable distributions for which it is hard to approximate the probability assigned to a randomly chosen string in the support of the distribution (upto inverse polynomial multiplicative error). 2. The existence of one-way puzzles, where a quantum sampler outputs a pair of classical strings -- a puzzle and its key -- and where the hardness lies in finding the key corresponding to a random puzzle. These are known to imply quantum bit commitments [Khurana and Tomer, STOC'24]. 3. The existence of state puzzles, or one-way state synthesis, where it is hard to synthesize a secret quantum state given a public classical identifier. These capture the hardness of search problems with quantum inputs (secrets) and classical outputs (challenges). These are the first constructions of quantum cryptographic primitives (one-way puzzles, quantum bit commitments, state puzzles) from concrete, well-founded mathematical assumptions that do not imply the existence of classical cryptography. Along the way, we also show that distributions that admit efficient quantum samplers but cannot be pseudo-deterministically efficiently sampled imply quantum commitments.
Expand
◄ Previous Next ►