IACR News
Here you can see all recent updates to the IACR webpage. These updates are also available:
08 October 2024
Qiqi Lai, Feng-Hao Liu, Yang Lu, Haiyang Xue, Yong Yu
ePrint Report
In this paper, we construct the first asymptotically efficient two-round $n$-out-of-$n$ and multi-signature schemes from lattices in the quantum random oracle model (QROM), using the Fiat-Shamir with Aborts (FSwA) paradigm. Our protocols can be viewed as the QROM~variants of the two-round protocols by Damgård et al. (JoC 2022). A notable feature of our protocol, compared to other counterparts in the classical random oracle model, is that each party performs an independent abort and still outputs a signature in exactly two rounds, making our schemes significantly more scalable.
From a technical perspective, the simulation of QROM~and the efficient reduction from breaking underlying assumption to forging signatures are the essential challenges to achieving efficient QROM security for the previously related works. In order to conquer the former one we adopt the quantum-accessible pseudorandom function (QPRF) to simulate QROM. Particularly, we show that there exist a QPRF~which can be programmed and inverted, even against a quantum adversary. For the latter challenge, we tweak and apply the online extractability by Unruh (Eurocrypt 2015).
From a technical perspective, the simulation of QROM~and the efficient reduction from breaking underlying assumption to forging signatures are the essential challenges to achieving efficient QROM security for the previously related works. In order to conquer the former one we adopt the quantum-accessible pseudorandom function (QPRF) to simulate QROM. Particularly, we show that there exist a QPRF~which can be programmed and inverted, even against a quantum adversary. For the latter challenge, we tweak and apply the online extractability by Unruh (Eurocrypt 2015).
Zerui Cheng, Edoardo Contente, Ben Finch, Oleg Golev, Jonathan Hayase, Andrew Miller, Niusha Moshrefi, Anshul Nasery, Sandeep Nailwal, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath
ePrint Report
Artificial Intelligence (AI) has steadily improved across a wide range of tasks, and a significant breakthrough towards general intelligence was achieved with the rise of generative deep models, which have garnered worldwide attention. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations and individuals who are racing to create Artificial General Intelligence (AGI). These centralized entities make decisions with little public oversight, shaping the future of humanity, often with unforeseen consequences.
In this paper, we propose OML, which stands for Open, Monetizable, and Loyal AI, an approach designed to democratize AI development and shift control away from these monopolistic actors. OML is realized through an interdisciplinary framework spanning AI, blockchain, and cryptography. We present several ideas for constructing OML systems using technologies such as Trusted Execution Environments (TEE), traditional cryptographic primitives like fully homomorphic encryption and functional encryption, obfuscation, and AI-native solutions rooted in the sample complexity and intrinsic hardness of AI tasks.
A key innovation of our work is the introduction of a new scientific field: AI-native cryptography, which leverages cryptographic primitives tailored to AI applications. Unlike conventional cryptography, which focuses on discrete data and binary security guarantees, AI-native cryptography exploits the continuous nature of AI data representations and their low-dimensional manifolds, focusing on improving approximate performance. One core idea is to transform AI attack methods, such as data poisoning, into security tools. This novel approach serves as a foundation for OML 1.0, an implemented system that demonstrates the practical viability of AI-native cryptographic techniques. At the heart of OML 1.0 is the concept of model fingerprinting, a novel AI-native cryptographic primitive that helps protect the integrity and ownership of AI models.
The spirit of OML is to establish a decentralized, open, and transparent platform for AI development, enabling the community to contribute, monetize, and take ownership of AI models. By decentralizing control and ensuring transparency through blockchain technology, OML prevents the concentration of power and provides accountability in AI development that has not been possible before.
To the best of our knowledge, this paper is the first to:
• Identify the monopolization and lack of transparency challenges in AI deployment today and formulate the challenge as OML (Open, Monetizable, Loyal).
• Provide an interdisciplinary approach to solving the OML challenge, incorporating ideas from AI, blockchain, and cryptography.
• Introduce and formally define the new scientific field of AI-native cryptography.
• Develop novel AI-native cryptographic primitives and implement them in OML 1.0, analyzing their security and effectiveness.
• Leverage blockchain technology to host OML solutions, ensuring transparency, decentralization, and alignment with the goals of democratized AI development.
Through OML, we aim to provide a decentralized framework for AI development that prioritizes open collaboration, ownership rights, and transparency, ultimately fostering a more inclusive AI ecosystem.
Yijian Zhang, Jie Chen, Debiao He, Yuqing Zhang
ePrint Report
As an emerging primitive, Registered Functional Encryption (RFE) eliminates the key-escrow issue that threatens numerous works for functional encryption, by replacing the trusted authority with a transparent key curator and allowing each user to sample their decryption keys locally. In this work, we present a new black-box approach to construct RFE for all polynomial-sized circuits. It considers adaptive simulation-based security in the bounded collusion model (Gorbunov et al. - CRYPTO'12), where the security can be ensured only if there are no more than Q >= 1 corrupted users and $Q$ is fixed at the setup phase. Unlike earlier works, we do not employ unpractical Indistinguishability Obfuscation (iO). Conversely, it can be extended to support unbounded users, which is previously only known from iO.
Technically, our general compiler exploits garbled circuits and a novel variant of slotted Registered Broadcast Encryption (RBE), namely global slotted RBE. This primitive is similar to slotted RBE, but needs optimally compact public parameters and ciphertext, so as to satisfy the efficiency requirement of the resulting RFE. Then we present two concrete global slotted RBE from pairings and lattices, respectively. With proposed compiler, we hence obtain two bounded collusion-resistant RFE schemes. Here, the first scheme relies on k-Lin assumption, while the second one supports unbounded users under LWE and evasive LWE assumptions.
Technically, our general compiler exploits garbled circuits and a novel variant of slotted Registered Broadcast Encryption (RBE), namely global slotted RBE. This primitive is similar to slotted RBE, but needs optimally compact public parameters and ciphertext, so as to satisfy the efficiency requirement of the resulting RFE. Then we present two concrete global slotted RBE from pairings and lattices, respectively. With proposed compiler, we hence obtain two bounded collusion-resistant RFE schemes. Here, the first scheme relies on k-Lin assumption, while the second one supports unbounded users under LWE and evasive LWE assumptions.
Ulrich Haböck
ePrint Report
In this writeup we discuss the soundness of the Basefold multilinear polynomial commitment scheme [Zeilberger, Chen, Fisch 23] applied to Reed-Solomon codes, and run with proximity parameters up to the Johnson list decoding bound.
Our security analysis relies on a generalization of the celebrated correlated agreement theorem from [Ben-Sasson, et al., 20] to linear subcodes of Reed-Solomon codes, which turns out a by-product of the Guruswami-Sudan list decoder analysis.
We further highlight a non-linear variant of the subcode correlated
agreement theorem, which is flexible enough to apply to Basefold-like protocols such as recent optimizations of FRI-Binius [Diamond, Posen 24], and which we believe sufficient for proving the security of a recent multilinear version of STIR [Arnon, Chiesa, Fenzi, Yogev 24] in the list-decoding regime
Kota Yoshida, Sengim Karayalcin, Stjepan Picek
ePrint Report
Recently, deep learning-based side-channel analysis (DLSCA) has emerged as a serious threat against cryptographic implementations. These methods can efficiently break implementations protected with various countermeasures while needing limited manual intervention. To effectively protect implementation, it is therefore crucial to be able to interpret \textbf{how} these models are defeating countermeasures. Several works have attempted to gain a better understanding of the mechanics of these models. However, a fine-grained description remains elusive.
To help tackle this challenge, we propose using Kolmogorov-Arnold Networks (KANs). These neural networks were recently introduced and showed competitive performance to multilayer perceptrons (MLPs) on small-scale tasks while being easier to interpret. In this work, we show that KANs are well suited to SCA, performing similarly to MLPs across both simulated and real-world traces. Furthermore, we find specific strategies that the trained models learn for combining mask shares and are able to measure what points in the trace are relevant.
07 October 2024
Announcement
After the successful launch of the IACR Communications in Cryptology in 2024, the Editors-in-Chief are looking for new Editorial Board members for the 4 issues in 2025.
Please use this form for (self-) nomination: https://forms.gle/myrGvP1FFdk1p6pU9
Please use this form for (self-) nomination: https://forms.gle/myrGvP1FFdk1p6pU9
University of Bergen
Job Posting
At the Department of Informatics, there is a vacancy for a postdoctoral research fellow position within the topic of cryptography and its applications to security of AI at the Selmer Center in Secure Communication.
The position is for a fixed term of 3 years and is associated with financing from the University of Bergen.
The position is open to either an incoming or an outgoing candidate, see LEAD AI mobility rules. Please see full listing.
Closing date for applications:
Contact: Professor Lilya Budaghyan at the Department of Informatics, UiB, Lilya.Budaghyan@uib.no
More information: https://www.jobbnorge.no/en/available-jobs/job/268343/lead-ai-postdoctoral-research-fellow-position-within-cryptography-and-security-of-ai
05 October 2024
Maher Mamah
ePrint Report
In this paper we study several computational problems related to current post-quantum cryptosystems based on isogenies between supersingular elliptic curves. In particular we prove that the supersingular isogeny path and endomorphism ring problems are unconditionally equivalent under polynomial time reductions. We show that access to a factoring oracle is sufficient to solve the Quaternion path problem of KLPT and prove that these problems are equivalent, where previous results either assumed heuristics or the generalised Riemann Hypothesis (GRH). Recently these reductions have become foundational for the security of isogeny-based cryptography
John Bostanci, Boyang Chen, Barak Nehoran
ePrint Report
We show that there exists a unitary quantum oracle relative to which quantum commitments exist but no (efficiently verifiable) one-way state generators exist. Both have been widely considered candidates for replacing one-way functions as the minimal assumption for cryptography—the weakest cryptographic assumption implied by all of computational cryptography. Recent work has shown that commitments can be constructed from one-way state generators, but the other direction has remained open. Our results rule out any black-box construction, and thus settle this crucial open problem, suggesting that quantum commitments (as well as its equivalency class of EFI pairs, quantum oblivious transfer, and secure quantum multiparty computation) appear to be strictly weakest among all known cryptographic
Amit Behera, Giulio Malavolta, Tomoyuki Morimae, Tamer Mour, Takashi Yamakawa
ePrint Report
While in classical cryptography, one-way functions (OWFs) are widely regarded as the “minimal assumption,” the situation in quantum cryptography is less clear. Recent works have put forward two concurrent candidates for the minimal assumption in quantum cryptography: One-way state generators (OWSGs), postulating the existence of a hard search problem with an efficient verification algorithm, and EFI pairs, postulating the existence of a hard distinguishing problem. Two recent papers [Khurana and Tomer STOC’24; Batra and Jain FOCS’24] showed that OWSGs imply EFI pairs, but the reverse direction remained open. In this work, we give strong evidence that the opposite direction does not hold: We show that there is a quantum unitary oracle relative to which EFI pairs exist, but OWSGs do not. In fact, we show a slightly stronger statement that holds also for EFI pairs that output classical bits (QEFID).
As a consequence, we separate, via our oracle, QEFID, and one-way puzzles from OWSGs and several other Microcrypt primitives, including efficiently verifiable one-way puzzles and unclonable state generators. In particular, this solves a problem left open in [Chung, Goldin, and Gray Crypto’24].
Using similar techniques, we also establish a fully black-box separation (which is slightly weaker than an oracle separation) between private-key quantum money schemes and QEFID pairs.
One conceptual implication of our work is that the existence of an efficient verification algorithm may lead to qualitatively stronger primitives in quantum cryptography.
Weijie Wang, Charalampos Papamanthou, Shravan Srinivasan, Dimitrios Papadopoulos
ePrint Report
In this work, we put forth the notion of dynamic zk-SNARKs. A dynamic zk-SNARK is a zk-SNARK that has an additional update algorithm. The update algorithm takes as input a valid source statement-witness pair $(x,w)\in \mathcal{L}$ along with a verifying proof $\pi$, and a valid target statement-witness pair $(x',w')\in \mathcal{L}$. It outputs a verifying proof $\pi'$ for $(x',w')$ in sublinear time (for $(x,w)$ and $(x',w')$ with small Hamming distance) potentially with the help of a data structure. To the best of our knowledge, none of the commonly-used zk-SNARKs are dynamic---a single update in $(x,w)$ can be handled only by recomputing the proof, which requires at least linear time. After presenting the formal definition of dynamic zk-SNARKs, we provide two constructions. The first one is based on recursive SNARKs and has $O(\log n)$ update time. However it suffers from heuristic security---it must encode the random oracle in the SNARK circuit. The second one and our central contribution, $\mathsf{Dynaverse}$, is based solely on KZG commitments and has $O(\sqrt{n}\log n)$ update time. Our preliminary evaluation shows, that, while worse asymptotically, $\mathsf{Dynaverse}$ outperforms the recursive-based approach by at least one order of magnitude.
Hieu Nguyen, Uyen Ho, Alex Biryukov
ePrint Report
The Fiat-Shamir transformation is a key technique for removing interactivity from cryptographic proof systems in real-world applications. In this work, we discuss five types of Fiat-Shamir-related protocol design errors and illustrate them with concrete examples mainly taken from real-life applications. We discuss countermeasures for such vulnerabilities.
Fuyuki Kitagawa, Tomoyuki Morimae, Takashi Yamakawa
ePrint Report
Secure key leasing (a.k.a. key-revocable cryptography) enables us to lease a cryptographic key as a quantum state in such a way that the key can be later revoked in a verifiable manner. We propose a simple framework for constructing cryptographic primitives with secure key leasing via the certified deletion property of BB84 states. Based on our framework, we obtain the following schemes.
- A public key encryption scheme with secure key leasing that has classical revocation based on any IND-CPA secure public key encryption scheme. Prior works rely on either quantum revocation or stronger assumptions such as the quantum hardness of the learning with errors (LWE) problem.
- A pseudorandom function with secure key leasing that has classical revocation based on one-way functions. Prior works rely on stronger assumptions such as the quantum hardness of the LWE problem.
- A digital signature scheme with secure key leasing that has classical revocation based on the quantum hardness of the short integer solution (SIS) problem. Our construction has static signing keys, i.e., the state of a signing key almost does not change before and after signing. Prior constructions either rely on non-static signing keys or indistinguishability obfuscation to achieve a stronger goal of copy-protection.
In addition, all of our schemes remain secure even if a verification key for revocation is leaked after the adversary submits a valid certificate of deletion. To our knowledge, all prior constructions are totally broken in this setting. Moreover, in our view, our security proofs are much simpler than those for existing schemes.
- A public key encryption scheme with secure key leasing that has classical revocation based on any IND-CPA secure public key encryption scheme. Prior works rely on either quantum revocation or stronger assumptions such as the quantum hardness of the learning with errors (LWE) problem.
- A pseudorandom function with secure key leasing that has classical revocation based on one-way functions. Prior works rely on stronger assumptions such as the quantum hardness of the LWE problem.
- A digital signature scheme with secure key leasing that has classical revocation based on the quantum hardness of the short integer solution (SIS) problem. Our construction has static signing keys, i.e., the state of a signing key almost does not change before and after signing. Prior constructions either rely on non-static signing keys or indistinguishability obfuscation to achieve a stronger goal of copy-protection.
In addition, all of our schemes remain secure even if a verification key for revocation is leaked after the adversary submits a valid certificate of deletion. To our knowledge, all prior constructions are totally broken in this setting. Moreover, in our view, our security proofs are much simpler than those for existing schemes.
Marius A. Aardal, Gora Adj, Arwa Alblooshi, Diego F. Aranha, Isaac A. Canales-Martínez, Jorge Chavez-Saab, Décio Luiz Gazzoni Filho, Krijn Reijnders, Francisco Rodríguez-Henríquez
ePrint Report
SQIsign is a well-known post-quantum signature scheme due to its small combined signature and public-key size. However, SQIsign suffers from notably long signing times, and verification times are not short either. To improve this, recent research has explored both one-dimensional and two-dimensional variants of SQIsign, each with distinct characteristics. In particular, SQIsign2D’s efficient signing and
verification times have made it a focal point of recent research. However, the absence of an optimized one-dimensional verification implementation hampers a thorough comparison between these different variants.
This work bridges this gap in the literature: we provide a state-of-the-art implementation of one-dimensional SQIsign verification, including novel optimizations. We report a record-breaking one-dimensional SQIsign verification time of 8.6 Ice Lake Mcycles, closely matching SQIsign2D. For uncompressed signatures, the signature size doubles and we verify in only 5.6 Mcycles. Taking advantage of the inherent parallelism available in isogeny computations, we present 5-core variants that can go as low as 1.3 Mcycles. Furthermore, we present the first implementation that supports both 32-bit and 64-bit processors. It includes optimized assembly code for the Cortex-M4 and has been integrated with the pqm4 project. Our results motivate further research into one-dimensional SQIsign, as it boasts unique features among isogeny-based schemes.
This work bridges this gap in the literature: we provide a state-of-the-art implementation of one-dimensional SQIsign verification, including novel optimizations. We report a record-breaking one-dimensional SQIsign verification time of 8.6 Ice Lake Mcycles, closely matching SQIsign2D. For uncompressed signatures, the signature size doubles and we verify in only 5.6 Mcycles. Taking advantage of the inherent parallelism available in isogeny computations, we present 5-core variants that can go as low as 1.3 Mcycles. Furthermore, we present the first implementation that supports both 32-bit and 64-bit processors. It includes optimized assembly code for the Cortex-M4 and has been integrated with the pqm4 project. Our results motivate further research into one-dimensional SQIsign, as it boasts unique features among isogeny-based schemes.
Akash Madhusudan, Mustafa A. Mustafa, Hilder V.L. Pereira, Erik Takke
ePrint Report
Peer-to-peer energy trading markets enable users to exchange electricity, directly offering them increased financial benefits. However, discrepancies often arise between the electricity volumes committed to in trading auctions and the volumes actually consumed or injected. Solutions designed to address this issue often require access to sensitive information that should be kept private.
This paper presents a novel, fully privacy-preserving billing protocol designed to protect users' sensitive consumption and production data in the context of billing protocols for energy trading. Leveraging advanced cryptographic techniques, including fully homomorphic encryption (FHE) and pseudorandom zero sharing (PRZS), our protocol ensures robust security and confidentiality while addressing the critical issue of managing discrepancies between promised and actual electricity volumes. The proposed protocol guarantees that users' sensitive information remains inaccessible to external parties, including the trading platform and billing server. By utilizing FHE, the protocol allows computations on encrypted data without compromising privacy, while PRZS ensures secure aggregation of individual discrepancies of each household. This combination of cryptographic primitives maintains data privacy and enhances billing accuracy, even when fluctuations in energy supply and demand occur.
We analyze real-time consumption and production data from 100 households to experimentally validate the effectiveness and efficiency of our billing model. By implementing a flexible framework compatible with any billing method, we demonstrate that our protocol can accurately compute individual bills for 100 households in approximately 0.17 seconds.
This paper presents a novel, fully privacy-preserving billing protocol designed to protect users' sensitive consumption and production data in the context of billing protocols for energy trading. Leveraging advanced cryptographic techniques, including fully homomorphic encryption (FHE) and pseudorandom zero sharing (PRZS), our protocol ensures robust security and confidentiality while addressing the critical issue of managing discrepancies between promised and actual electricity volumes. The proposed protocol guarantees that users' sensitive information remains inaccessible to external parties, including the trading platform and billing server. By utilizing FHE, the protocol allows computations on encrypted data without compromising privacy, while PRZS ensures secure aggregation of individual discrepancies of each household. This combination of cryptographic primitives maintains data privacy and enhances billing accuracy, even when fluctuations in energy supply and demand occur.
We analyze real-time consumption and production data from 100 households to experimentally validate the effectiveness and efficiency of our billing model. By implementing a flexible framework compatible with any billing method, we demonstrate that our protocol can accurately compute individual bills for 100 households in approximately 0.17 seconds.
Daniel Günther, Joachim Schmidt, Thomas Schneider, Hossein Yalame
ePrint Report
In modern business to customer interactions, handling private or confidential data is essential. Private Function Evaluation (PFE) protocols ensure the privacy of both the customers' input data and the business' function evaluated on it which is often sensitive intellectual property (IP). However, fully hiding the function in PFE results in high performance overhead. Semi-Private Function Evaluation (SPFE) is a generalization of PFE to only partially hide the function, whereas specific non-critical components remain public. Our paper introduces a novel framework designed to make SPFE accessible to non-experts and practical for real-world deployments.
To achieve this, we improve on previous SPFE solutions in two aspects. First, we enhance the developer experience by leveraging High-Level Synthesis (HLS), making our tool more user-friendly than previous SPFE frameworks. Second, we achieve a \(2 \times\) speedup compared to the previous state-of-the-art through more efficient underlying constructions and the usage of Lookup Tables (LUTs).
We evaluate the performance of our framework in terms of communication and runtime efficiency. Our final implementation is available as an open-source project, aiming to bridge the gap between advanced cryptographic protocols and their practical application in industry scenarios.
To achieve this, we improve on previous SPFE solutions in two aspects. First, we enhance the developer experience by leveraging High-Level Synthesis (HLS), making our tool more user-friendly than previous SPFE frameworks. Second, we achieve a \(2 \times\) speedup compared to the previous state-of-the-art through more efficient underlying constructions and the usage of Lookup Tables (LUTs).
We evaluate the performance of our framework in terms of communication and runtime efficiency. Our final implementation is available as an open-source project, aiming to bridge the gap between advanced cryptographic protocols and their practical application in industry scenarios.
Jiseung Kim, Hyung Tae Lee, Yongha Son
ePrint Report
A Private Set Union (PSU) allows two parties having sets $X$ and $Y$ to securely compute the union $X \cup Y$ while revealing no additional information. Recently, there have been proposed so-called shuffle-based PSU protocols due to Garimella et. al. (PKC'21) and Jia et. al. (USENIX'22).
Except a few base oblivious transfers, those proposals are fully based on symmetric key primitives and hence enjoy quite low computation costs. However, they commonly have drawbacks on large communication cost of $O(\ell n\log n)$ with input set size $n$ and $\ell \ge O(\lambda + \log n)$ where $\lambda$ is a statistical security parameter.
We propose two optimizations for each work that reduce communication cost while maintaining strength in computation cost; the first one optimizes Garimella et. al. to have $O(\ell n + n \log n)$, and the second one optimizes Jia et. al. by reducing the concrete value of $\ell$ by $\log n$. Concretely, the first (second, resp) optimization provides $3.3 - 3.9$x ($1.7 - 1.8$x, resp) lower communication input set sizes $n = 2^{16} - 2^{20}$.
We demonstrate by comprehensive analysis and implementation that our optimization leads to better PSU protocol, compared to the state-of-the-art proposal of Zhang et. al. (USENIX'23) as well as previous shuffle-based PSUs. As a concrete amount of improvement, we see $1.4-1.5$x speed up for $100$Mbps network, and $1.8-2.2$x speed up for $10$Mbps network on input set sizes $n = 2^{16} - 2^{20}$.
We propose two optimizations for each work that reduce communication cost while maintaining strength in computation cost; the first one optimizes Garimella et. al. to have $O(\ell n + n \log n)$, and the second one optimizes Jia et. al. by reducing the concrete value of $\ell$ by $\log n$. Concretely, the first (second, resp) optimization provides $3.3 - 3.9$x ($1.7 - 1.8$x, resp) lower communication input set sizes $n = 2^{16} - 2^{20}$.
We demonstrate by comprehensive analysis and implementation that our optimization leads to better PSU protocol, compared to the state-of-the-art proposal of Zhang et. al. (USENIX'23) as well as previous shuffle-based PSUs. As a concrete amount of improvement, we see $1.4-1.5$x speed up for $100$Mbps network, and $1.8-2.2$x speed up for $10$Mbps network on input set sizes $n = 2^{16} - 2^{20}$.
Emanuele Bellini, Mohamed Rachidi, Raghvendra Rohit, Sharwan K. Tiwari
ePrint Report
This paper reveals a critical flaw in the design of ARADI, a recently proposed low-latency block cipher by NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks. The weakness exploits the specific composition of Toffoli gates in the round function of ARADI's nonlinear layer, and it allows the extension of a given algebraic distinguisher to one extra round without any change in the data complexity. More precisely, we show that the cube-sum values, though depending on the secret key bits, are always equal in two of the state words. Such a structural property is difficult to obtain by the direct application of division property and has never been seen before in any state-of-the-art block cipher. We call this structural property \textit{weakly-composed-Toffoli gates}, and introduce a theoretical framework which can describe it in general terms. We present algebraic distinguishers that reach 8 out of 16 rounds of ARADI. Most notably, we show that these distinguishers have better data complexities than the division property-based distinguishers for the same number of rounds. We further investigate whether changing the linear layer or the order of composition of Toffoli gates could avoid this property. We give a negative answer to the same and show that it is impossible to prevent this structural property unless the nonlinear layer is re-designed. As a side result, we provide a key-recovery attack on 10 rounds ARADI with $2^{124}$ data and $2^{177}$ time for a 256-bit key. Our work highlights the significance of security analysis during the cipher design phase, and shows that these strong structural distinguishers could have been avoided during this phase.
Alexandra Boldyreva, Zichen Gui, Bogdan Warinschi
ePrint Report
Searchable encryption, or more generally, structured encryption, permits search over encrypted data. It is an important cryptographic tool for securing cloud storage. The standard security notion for structured encryption mandates that a protocol leaks nothing about the data or queries, except for some allowed leakage, defined by the leakage function. This is due to the fact that some leakage is unavoidable for efficient schemes. Unfortunately, it was shown by numerous works that even innocuous-looking leakage can often be exploited by attackers to undermine users' privacy and recover their queries and/or data, despite the structured encryption schemes being provably secure. Nevertheless, the standard security remains the go-to notion used to show the "security" of structured encryption schemes. While it is not likely that researchers will design practical structured encryption schemes with no leakage, it is not satisfactory that very few works study ways to assess leakage. This work proposes a novel framework to quantify leakage. Our methodology is inspired by the quantitative information flow, and we call our method $q$-leakage analysis. We show how $q$-leakage analysis is related to the standard security. We also demonstrate the usefulness of $q$-leakage analysis by analyzing the security of two existing schemes with complex leakage functions.
Renas Bacho, Benedikt Wagner
ePrint Report
Threshold signatures have been drawing lots of attention in recent years. Of particular interest are threshold signatures that are proven secure under adaptive corruptions (NIST Call 2023). Sadly, existing constructions with provable adaptive security suffer from at least one of the following drawbacks: (i) strong idealizations such as the algebraic group model (AGM), (ii) an unnatural restriction on the corruption threshold being $t/2$ where $t$ is the signing threshold, or (iii) prohibitively large security loss under established assumptions. Notably, point (iii) has received little to no attention in the literature on this subject.
In this work, we introduce Twinkle-T, a new threshold signature scheme which overcomes these limitations. Twinkle-T is the first scheme to have a fully tight security proof under up to $t$ adaptive corruptions without relying on the AGM. It also has a signing protocol consisting of only three rounds and thus matches the currently best threshold signature with full adaptive security Twinkle (Eurocrypt 2024) in the pairing-free discrete logarithm setting. We prove security from a standard non-interactive assumption, namely, the Decisional Diffie-Hellman (DDH) assumption.
In this work, we introduce Twinkle-T, a new threshold signature scheme which overcomes these limitations. Twinkle-T is the first scheme to have a fully tight security proof under up to $t$ adaptive corruptions without relying on the AGM. It also has a signing protocol consisting of only three rounds and thus matches the currently best threshold signature with full adaptive security Twinkle (Eurocrypt 2024) in the pairing-free discrete logarithm setting. We prove security from a standard non-interactive assumption, namely, the Decisional Diffie-Hellman (DDH) assumption.