IACR News
Here you can see all recent updates to the IACR webpage. These updates are also available:
09 January 2025
Aydin Abadi, Yvo Desmedt
ePrint Report
It is imperative to modernize traditional core cryptographic primitives, such as Oblivious Transfer (OT), to address the demands of the new digital era, where privacy-preserving computations are executed on low-power devices. This modernization is not merely an enhancement but a necessity to ensure security, efficiency, and continued relevance in an ever-evolving technological landscape.
This work introduces two scalable OT schemes: (1) Helix OT, a $1$-out-of-$n$ OT, and (2) Priority OT, a $t$-out-of-$n$ OT. Both schemes provide unconditional security, ensuring resilience against quantum adversaries. Helix OT achieves a receiver-side download complexity of $O(1)$. In big data scenarios, where certain data may be more urgent or valuable, we propose Priority OT. With a receiver-side download complexity of $O(t)$, this scheme allows data to be received based on specified priorities. By prioritizing data transmission, Priority OT ensures that the most important data is received first, optimizing bandwidth, storage, and processing resources. Performance evaluations indicate that Helix OT completes the transfer of 1 out of $n=$ 16,777,216 messages in 9 seconds, and Priority OT handles $t=$ 1,048,576 out of $n$ selections in 30 seconds. Both outperform existing $t$-out-of-$n$ OTs (when $t\geq 1$), underscoring their suitability for large-scale applications. To the best of our knowledge, Helix OT and Priority OT introduce unique advancements that distinguish them from previous schemes.
This work introduces two scalable OT schemes: (1) Helix OT, a $1$-out-of-$n$ OT, and (2) Priority OT, a $t$-out-of-$n$ OT. Both schemes provide unconditional security, ensuring resilience against quantum adversaries. Helix OT achieves a receiver-side download complexity of $O(1)$. In big data scenarios, where certain data may be more urgent or valuable, we propose Priority OT. With a receiver-side download complexity of $O(t)$, this scheme allows data to be received based on specified priorities. By prioritizing data transmission, Priority OT ensures that the most important data is received first, optimizing bandwidth, storage, and processing resources. Performance evaluations indicate that Helix OT completes the transfer of 1 out of $n=$ 16,777,216 messages in 9 seconds, and Priority OT handles $t=$ 1,048,576 out of $n$ selections in 30 seconds. Both outperform existing $t$-out-of-$n$ OTs (when $t\geq 1$), underscoring their suitability for large-scale applications. To the best of our knowledge, Helix OT and Priority OT introduce unique advancements that distinguish them from previous schemes.
Sebastian Faust, Maximilian Orlt, Kathrin Wirschem, Liang Zhao
ePrint Report
Unprotected cryptographic implementations are vulnerable to implementation attacks, such as passive side-channel attacks and active fault injection attacks. Recently, countermeasures like polynomial masking and duplicated masking have been introduced to protect implementations against combined attacks that exploit leakage and faults simultaneously.
While duplicated masking requires $O(t * e)$ shares to resist an adversary capable of probing $t$ values and faulting $e$ values, polynomial masking requires only $O(t + e)$ shares, which is particularly beneficial for affine computation.
At CHES'$24$, Arnold et al. showed how to further improve the efficiency of polynomial masking in the presence of combined attacks by embedding two secrets into one polynomial sharing. This essentially reduces the complexity of previous constructions by half. The authors also observed that using techniques from packed secret sharing (Grosso et al., CHES'$13$) cannot easily achieve combined resilience to encode an arbitrary number of secrets in one polynomial encoding.
In this work, we resolve these challenges and show that it is possible to embed an arbitrary number of secrets in one encoding and propose gadgets that are secure against combined attacks. We present two constructions that are generic and significantly improve the computational and randomness complexity of existing compilers, such as the laOla compiler presented by Berndt et al. at CRYPTO'$23$ and its improvement by Arnold et al.
For example, for an AES evaluation that protects against $t$ probes and $e$ faults, we improve the randomness complexity of the state-of-the-art construction when $t+e>3$, leading to an improvement of up to a factor of $2.41$.
Alex Evans, Nicolas Mohnblatt, Guillermo Angeris
ePrint Report
We introduce ZODA, short for 'zero-overhead data availability,' which is a protocol for proving that symbols received from an encoding (for tensor codes) were correctly constructed. ZODA has optimal overhead for both the encoder and the samplers. Concretely, the ZODA scheme incurs essentially no incremental costs (in either computation or size) beyond those of the tensor encoding itself. In particular, we show that a slight modification to the encoding scheme for tensor codes allows sampled rows and columns of this modified encoding to become proofs of their own correctness. When used as part of a data availability sampling protocol, both encoders (who encode some data using a tensor code with some slight modifications) and samplers (who sample symbols from the purported encoding and verify that these samples are correctly encoded) incur no incremental communication costs and only small additional computational costs over having done the original tensor encoding. ZODA additionally requires no trusted setup and is plausibly post-quantum secure.
Laia Amorós, James Clements, Chloe Martindale
ePrint Report
Suppose you have a supersingular $\ell$-isogeny graph with vertices given by $j$-invariants defined over $\mathbb{F}_{p^2}$, where $p = 4 \cdot f \cdot \ell^e - 1$ and $\ell \equiv 3 \pmod{4}$. We give an explicit parametrization of the maximal orders in $B_{p,\infty}$ appearing as endomorphism rings of the elliptic curves in this graph that are $\leq e$ steps away from a root vertex with $j$-invariant 1728. This is the first explicit parametrization of this kind and we believe it will be an aid in better understanding the structure of supersingular $\ell$-isogeny graphs that are widely used in cryptography. Our method makes use of the inherent directions in the supersingular isogeny graph induced via Bruhat-Tits trees, as studied in [1]. We also discuss how in future work other interesting use cases, such as $\ell=2$, could benefit from the same methodology.
Alessandra Scafuro, Tanner Verber
ePrint Report
The server-aided model for multiparty computation (MPC) was introduced to capture a real-world scenario where clients wish to off-load the heavy computation of MPC protocols to dedicated servers. A rich body of work has studied various trade-offs between security guarantees (e.g., semi-honest vs malicious), trust assumptions (e.g., the threshold on corrupted servers), and efficiency.
However, all existing works make the assumption that all clients must agree on employing the same servers, and accept the same corruption threshold. In this paper, we challenge this assumption and introduce a new paradigm for server-aided MPC, where each client can choose their own set of servers and their own threshold of corrupted servers. In this new model, the privacy of each client is guaranteed as long as their own threshold is satisfied, regardless of the other servers/clients. We call this paradigm per-party private server-aided MPC to highlight both a security and efficiency guarantee: (1) per-party privacy, which means that each party gets their own privacy guarantees that depend on their own choice of the servers; (2) per-party complexity, which means that each party only needs to communicate with their chosen servers. Our primary contribution is a new theoretical framework for server-aided MPC. We provide two protocols to show feasibility, but leave it as a future work to investigate protocols that focus on concrete efficiency.
However, all existing works make the assumption that all clients must agree on employing the same servers, and accept the same corruption threshold. In this paper, we challenge this assumption and introduce a new paradigm for server-aided MPC, where each client can choose their own set of servers and their own threshold of corrupted servers. In this new model, the privacy of each client is guaranteed as long as their own threshold is satisfied, regardless of the other servers/clients. We call this paradigm per-party private server-aided MPC to highlight both a security and efficiency guarantee: (1) per-party privacy, which means that each party gets their own privacy guarantees that depend on their own choice of the servers; (2) per-party complexity, which means that each party only needs to communicate with their chosen servers. Our primary contribution is a new theoretical framework for server-aided MPC. We provide two protocols to show feasibility, but leave it as a future work to investigate protocols that focus on concrete efficiency.
Varun Madathil, Alessandra Scafuro, Tanner Verber
ePrint Report
A central question in the theory of cryptography is whether we can build protocols that achieve stronger security guarantees, e.g., security against malicious adversaries, by combining building blocks that achieve much weaker security guarantees, e.g., security only against semi-honest adversaries; and with the minimal number of rounds. An additional focus is whether these building blocks can be used only as a black-box. Since Oblivious Transfer (OT) is the necessary and sufficient building block to securely realize any two-party (and multi-party) functionality, theoreticians often focus on proving whether maliciously secure OT can be built from a weaker notion of OT.
There is a rich body of literature that provides (black-box) compilers that build malicious OT from OTs that achieve weaker security such as semi-malicious OT and defensibly secure OT, within the minimal number of rounds. However, no round-optimal compiler exists that builds malicious OT from the weakest notion of semi-honest OT, in the plain model.
Correlation intractable hash (CIH) functions are special hash functions whose properties allow instantiating the celebrated Fiat-Shamir transform, and hence reduce the round complexity of public-coin proof systems.
In this work, we devise the first round-optimal compiler from semi-honest OT to malicious OT, by a novel application of CIH for collapsing rounds in the plain model. We provide the following contributions. First, we provide a new CIH-based round-collapsing construction for general cut-and-choose. This gadget can be used generally to prove the correctness of the evaluation of a function. Then, we use our gadget to build the first round-optimal compiler from semi-honest OT to malicious OT.
Our compiler uses the semi-honest OT protocol and the other building blocks in a black-box manner. However, for technical reasons, the underlying CIH construction requires the upper bound of the circuit size of the semi-honest OT protocol used. The need for this upper-bound makes our protocol not fully black-box, hence is incomparable with existing, fully black-box, compilers.
There is a rich body of literature that provides (black-box) compilers that build malicious OT from OTs that achieve weaker security such as semi-malicious OT and defensibly secure OT, within the minimal number of rounds. However, no round-optimal compiler exists that builds malicious OT from the weakest notion of semi-honest OT, in the plain model.
Correlation intractable hash (CIH) functions are special hash functions whose properties allow instantiating the celebrated Fiat-Shamir transform, and hence reduce the round complexity of public-coin proof systems.
In this work, we devise the first round-optimal compiler from semi-honest OT to malicious OT, by a novel application of CIH for collapsing rounds in the plain model. We provide the following contributions. First, we provide a new CIH-based round-collapsing construction for general cut-and-choose. This gadget can be used generally to prove the correctness of the evaluation of a function. Then, we use our gadget to build the first round-optimal compiler from semi-honest OT to malicious OT.
Our compiler uses the semi-honest OT protocol and the other building blocks in a black-box manner. However, for technical reasons, the underlying CIH construction requires the upper bound of the circuit size of the semi-honest OT protocol used. The need for this upper-bound makes our protocol not fully black-box, hence is incomparable with existing, fully black-box, compilers.
Jingwei Hu, Zhiqi Liu, Cong Zuo
ePrint Report
In this work, we address the problem of Delegated PSI (D-PSI), where a cloud server is introduced to handle most computational and communication tasks. D-PSI enables users to securely delegate their private sets to the cloud, ensuring the privacy of their data while allowing efficient computation of the intersection. The cloud operates under strict security requirements, learning nothing about the individual sets or the intersection result. Moreover, D-PSI minimizes user-to-user communication and supports "silent" processing, where the cloud can perform computations independently without user interaction, apart from set delegation and result retrieval.
We formally define the D-PSI problem and propose a novel construction that extends beyond two-party scenarios to support multi-party settings. Our construction adheres to the D-PSI requirements, including security against semi-honest adversaries, and achieves computational and communication complexities close to the ideal "perfect" D-PSI protocol. Additionally, we demonstrate the practicality of our approach through a baseline implementation and an optimized version that further reduces computational overhead. Our results establish a strong foundation for secure and efficient PSI in real-world cloud computing scenarios.
We formally define the D-PSI problem and propose a novel construction that extends beyond two-party scenarios to support multi-party settings. Our construction adheres to the D-PSI requirements, including security against semi-honest adversaries, and achieves computational and communication complexities close to the ideal "perfect" D-PSI protocol. Additionally, we demonstrate the practicality of our approach through a baseline implementation and an optimized version that further reduces computational overhead. Our results establish a strong foundation for secure and efficient PSI in real-world cloud computing scenarios.
Dongyu Wu
ePrint Report
In recent development of secure multi-party computation (MPC), pseudorandom correlations of subfield vector oblivious linear evaluation (sVOLE) type become popular due to their amazing applicability in multi-dimensional MPC protocols such as privacy-preserving biometric identification and privacy-preserving machine learning protocols. In this paper, we introduce a novel way of VOLE distribution in three-party and four-party honest majority settings with the aid of a trusted server. This new method significantly decreases the communication cost and the memory storage of random sVOLE instances. On the other hand, it also enables a streamline distribution process that can generate a sVOLE instance of an arbitrary length, which results in 100 percent of utility rate of random sVOLE in multi-dimensional MPC protocols while preserving complete precomputability.
08 January 2025
Xudong Zhu, Xinxuan Zhang, Xuyang Song, Yi Deng, Yuanju Wei, Liuyu Yang
ePrint Report
Two most common ways to design non-interactive zero knowledge (NIZK) proofs are based on Sigma ($\Sigma$)-protocols (an efficient way to prove algebraic statements) and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) protocols (an efficient way to prove arithmetic statements). However, in the applications of cryptocurrencies such as privacy-preserving credentials, privacy-preserving audits, and blockchain-based voting systems, the zk-SNARKs for general statements are usually implemented with encryption, commitment, or other algebraic cryptographic schemes. Moreover, zk-SNARKs for many different arithmetic statements may also be required to be implemented together. Clearly, a typical solution is to extend the zk-SNARK circuit to include the code for algebraic part. However, complex cryptographic operations in the algebraic algorithms will significantly increase the circuit size, which leads to impractically large proving time and CRS size. Thus, we need a flexible enough proof system for composite statements including both algebraic and arithmetic statements. Unfortunately, while the conjunction of zk-SNARKs is relatively natural and numerous effective solutions are currently available (e.g. by utilizing the commit-and-prove technique), the disjunction of zk-SNARKs is rarely discussed in detail.
In this paper, we mainly focus on the disjunctive statements of Groth16, and we propose a Groth16 variant---CompGroth16, which provides a framework for Groth16 to prove the disjunctive statements that consist of a mix of algebraic and arithmetic components. Specifically, we could directly combine CompGroth16 with $\Sigma$-protocol or even CompGroth16 with CompGroth16 just like the logical composition of $\Sigma$-protocols. From this, we can gain many good properties, such as broader expression, better prover's efficiency and shorter CRS. In addition, for the combination of CompGroth16 and $\Sigma$-protocol, we also present two representative application scenarios to demonstrate the practicality of our construction.
Otto Hanyecz, Alexander Karenin, Elena Kirshanova, Péter Kutas, Sina Schaeffler
ePrint Report
In this paper we propose a constant time lattice reduction algorithm for integral dimension-4 lattices. Motivated by its application in the SQIsign post-quantum signature scheme, we provide for the first time a constant time LLL-like algorithm with guarantees on the length of the shortest output vector. We implemented our algorithm and ensured through various tools that it indeed operates in constant time. Our experiments suggest that in practice our implementation outputs a Minkowski reduced basis and thus can replace a non constant time lattice reduction subroutine in SQIsign.
Wakaha Ogata, Toi Tomita, Kenta Takahashi, Masakatsu Nishigaki
ePrint Report
In this work, we study cryptosystems that can be executed securely without fully trusting all machines, but only trusting the user's brain. This paper focuses on signature scheme. We first introduce a new concept called ``server-aided in-brain signature,'' which is a cryptographic protocol between a human brain and multiple servers to sign a message securely even if the user's device and servers are not completely trusted. Second, we propose a concrete scheme that is secure against mobile hackers in servers and malware infecting user's devices.
Ky Nguyen
ePrint Report
Functional Encryption is a powerful cryptographic primitive that allows for fine-grained access control over encrypted data. In the multi-user setting, especially Multi-Client and Multi-Input, a plethora of works have been proposed to study on concrete function classes, improving security, and more. However, the CCA-security for such schemes is still an open problem, where the only known works are on Public-Key Single-Client FE (Benhamouda, Bourse, and Lipmaa, PKC'17).
This work provides the first generic construction of CCA-secure Multi-Client FE for Inner Products, and Multi-Input FE for Inner Products, with instantiations from $\mathsf{SXDH}$ and $\mathsf{DLIN}$ for the former, and $\mathsf{DDH}$ or $\mathsf{DCR}$ for the latter. Surprisingly, in the case of secret key MIFE we attain the same efficiency as in the public key single-client setting. In the MCFE setting, a toolkit of CCA-bootstrapping techniques is developed to achieve CCA-security in its $\mathit{secret~key}$ setting.
07 January 2025
Olivier Blazy, Emmanuel Conchon, Philippe Gaborit, Philippe Krejci, Cristina Onete
ePrint Report
Secret handshakes, introduced by Balfanz et al. [3], allow users associated with various groups to determine if they share a common affiliation. These protocols ensure crucial properties such as fairness (all participants learn the result simultaneously), affiliation privacy (failed handshakes reveal no affiliation information), and result-hiding (even participants within a shared group cannot infer outcomes of unrelated handshakes). Over time, various secret-handshake schemes have been proposed, with a notable advancement being the modular framework by Tsudik and Xu. Their approach integrates three key components: group signature schemes, centralized secure channels for each group, and decentralized group key-agreement protocols.
Building upon this modularity, we propose significant updates. By addressing hidden complexities and revising the security model, we enhance both the efficiency and the privacy guarantees of the protocol. Specifically, we achieve the novel property of Self distinction—the ability to distinguish between two users in a session without revealing their identities—by replacing the group signature primitive with a new construct, the List MAC. This primitive is inherently untraceable, necessitating adjustments to the original syntax to support stronger privacy guarantees. Consequently, we introduce the Traitor Catching paradigm, where the transcript of a handshake reveals only the identity of a traitor, preserving the anonymity of all other participants.
To showcase the flexibility and robustness of our updated framework, we present two post-quantum instantiations (a hash-based one and another based on lattices). Our approach not only corrects prior limitations but also establishes a new benchmark for privacy and security in secret handshakes.
Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri
ePrint Report
Space networking has become an increasing area of development with the advent of commercial satellite networks such as those hosted by Starlink and Kuiper, and increased satellite and space presence by governments around the world. Yet, historically such network designs have not been made public, leading to limited formal cryptographic analysis of the security offered by them. One of the few public protocols used in space networking is the Bundle Protocol, which is secured by Bundle Protocol Security (BPSec), an Internet Engineering Task Force (IETF) standard. We undertake a first analysis of BPSec under its default security context, building a model of the secure channel security goals stated in the IETF standard, and note issues therein with message loss detection. We prove BPSec secure, and also provide a stronger construction, one that supports the Bundle Protocol's functionality goals while also ensuring destination awareness of missing message components.
Zhihao Li, Xuan Shen, Xianhui Lu, Ruida Wang, Yuan Zhao, Zhiwei Wang, Benqiang Wei
ePrint Report
Multi-input and large-precision lookup table (LUT) evaluation pose significant challenges in Fully Homomorphic Encryption (FHE). Currently, two modes are employed to address this issue. One is tree-based functional bootstrapping (TFBS), which uses multiple blind rotations to construct a tree for LUT evaluation. The second is circuit bootstrapping, which decomposes all inputs into bits and utilizes a CMux tree for LUT evaluation. In this work, we propose a novel mode that is leveled functional bootstrapping. This mode utilizes the external product tree to perform multi-input functional bootstrapping. We implement TFBS and LFBS within the OpenFHE library. The results demonstrate that our method outperforms TFBS in both computational efficiency and bootstrapping key size. Specifically, for 12-bit and 16-bit input LUTs, our method is approximately two to three orders of magnitude faster than TFBS.
Finally, we introduce a novel scheme-switching framework that supports large-precision polynomial and non-polynomial evaluations. The framework leverages digital extraction techniques to enable seamless switching between the BFV and LFBS schemes.
Thomas Johansson, Mustafa Khairallah, Vu Nguyen
ePrint Report
In this paper, we introduce an oracle version of the Restricted Syndrome Decoding Problem (RSDP) and propose novel authentication protocols based on the hardness of this problem. They follow the basic structure of the HB-family of authentication protocols and later improvements but demonstrate several advantages.
An appropriate choice of multiplicative subgroup and ring structure gives rise to a very efficient hardware implementation compared to other \emph{Learning Parity with Noise} based approaches. In addition, the new protocols also have lower key size, lower communication costs, and potentially better completeness/soundness compared to learning-based alternatives. This is appealing in the context of low-cost, low-powered authenticating devices such as radio frequency identification (RFID) systems.
Lastly, we show that with additional assumptions, RSDP can be used to instantiate a Man-in-the-Middle secured authentication protocol.
Daehyeon Bae, Sujin Park, Minsig Choi, Young-Giu Jung, Changmin Jeong, Heeseok Kim, Seokhie Hong
ePrint Report
Electromagnetic side-channel analysis is a powerful method for monitoring processor activity and compromising cryptographic systems in air-gapped environments. As analytical methodologies and target devices evolve, the importance of leakage localization and probe aiming becomes increasingly apparent for capturing only the desired signals with a high signal-to-noise ratio. Despite its importance, there remains substantial reliance on unreliable heuristic approaches and inefficient exhaustive searches. Furthermore, related studies often fall short in terms of feasibility, practicality, and performance, and are limited to controlled DUTs and low-end MCUs.
To address the limitations and inefficiencies of the previous approaches, we propose a novel methodology―${\rm P{\tiny ROBE}S{\tiny HOOTER}}$―for leakage localization and probe aiming. This approach leverages new insights into the spatial characteristics of amplitude modulation and intermodulation distortion in processors. As a result, ${\rm P{\tiny ROBE}S{\tiny HOOTER}}$ provides substantial improvements in various aspects: $\boldsymbol 1)$ it is applicable to not only simple MCUs but also complex SoCs, $\boldsymbol 2)$ it effectively handles multi-core systems and dynamic frequency scaling, $\boldsymbol 3)$ it is adoptable to uncontrollable DUTs, making it viable for constrained real-world attacks, and $\boldsymbol 4)$ it performs significantly faster than previous methods. To demonstrate this, we experimentally evaluate ${\rm P{\tiny ROBE}S{\tiny HOOTER}}$ on a high-end MCU (the NXP i.MX RT1061 featuring a single ARM Cortex-M7 core) and a complex SoC (the Broadcom BCM2711 equipped with the Raspberry Pi 4 Model B, featuring four ARM Cortex-A72 cores).
To address the limitations and inefficiencies of the previous approaches, we propose a novel methodology―${\rm P{\tiny ROBE}S{\tiny HOOTER}}$―for leakage localization and probe aiming. This approach leverages new insights into the spatial characteristics of amplitude modulation and intermodulation distortion in processors. As a result, ${\rm P{\tiny ROBE}S{\tiny HOOTER}}$ provides substantial improvements in various aspects: $\boldsymbol 1)$ it is applicable to not only simple MCUs but also complex SoCs, $\boldsymbol 2)$ it effectively handles multi-core systems and dynamic frequency scaling, $\boldsymbol 3)$ it is adoptable to uncontrollable DUTs, making it viable for constrained real-world attacks, and $\boldsymbol 4)$ it performs significantly faster than previous methods. To demonstrate this, we experimentally evaluate ${\rm P{\tiny ROBE}S{\tiny HOOTER}}$ on a high-end MCU (the NXP i.MX RT1061 featuring a single ARM Cortex-M7 core) and a complex SoC (the Broadcom BCM2711 equipped with the Raspberry Pi 4 Model B, featuring four ARM Cortex-A72 cores).
Hao Chung, Ke Wu, Elaine Shi
ePrint Report
Today, many auctions are carried out with the help of intermediary platforms like Google and eBay. These platforms serve as a rendezvous point for the buyers and sellers, and charge a fee for its service. We refer to such auctions as platform-assisted auctions. Traditionally, the auction theory literature mainly focuses on designing auctions that incentivize the buyers to bid truthfully, assuming that the platform always faithfully implements the auction. In practice, however, the platforms have been found to manipulate the auctions to earn more profit, resulting in high-profile anti-trust lawsuits.
We propose a new model for studying platform-assisted auctions in the permissionless setting, where anyone can register and participate in the auction. We explore whether it is possible to design a dream auction in this new model, such that honest behavior is the utility-maximizing strategy for each individual buyer, the platform, the seller, as well as platform-seller or platform-buyer coalitions. Through a collection of feasibility and infeasibility results, we carefully characterize the mathematical landscape of platform-assisted auctions.
Interestingly, our work reveals exciting connections between cryptography and mechanism design. We show how cryptography can lend to the design of an efficient platform-assisted auction with dream properties. Although a line of works have also used multi-party computation (MPC) or the blockchain to remove the reliance on a trusted auctioneer, our work is distinct in nature in several dimensions. First, we initiate a systematic exploration of the game theoretic implications when the service providers (e.g., nodes that implement the MPC or blockchain protocol) are strategic and can collude with sellers or buyers. Second, we observe that the full simulation paradigm used in the standard MPC literature is too stringent and leads to high asymptotical costs. Specifically, because every player has a different private outcome in an auction protocol, to the best of our knowledge, running any generic MPC protocol among the players would incur at least $n^2$ total cost where $n$ is the number of buyers.We propose a new notion of simulation called {\it utility-dominated emulation} that is sufficient for guaranteeing the game-theoretic properties needed in an auction. Under this new notion of simulation, we show how to design efficient auction protocols with quasilinear efficiency, which gives an $n$-fold improvement over any generic approach.
We propose a new model for studying platform-assisted auctions in the permissionless setting, where anyone can register and participate in the auction. We explore whether it is possible to design a dream auction in this new model, such that honest behavior is the utility-maximizing strategy for each individual buyer, the platform, the seller, as well as platform-seller or platform-buyer coalitions. Through a collection of feasibility and infeasibility results, we carefully characterize the mathematical landscape of platform-assisted auctions.
Interestingly, our work reveals exciting connections between cryptography and mechanism design. We show how cryptography can lend to the design of an efficient platform-assisted auction with dream properties. Although a line of works have also used multi-party computation (MPC) or the blockchain to remove the reliance on a trusted auctioneer, our work is distinct in nature in several dimensions. First, we initiate a systematic exploration of the game theoretic implications when the service providers (e.g., nodes that implement the MPC or blockchain protocol) are strategic and can collude with sellers or buyers. Second, we observe that the full simulation paradigm used in the standard MPC literature is too stringent and leads to high asymptotical costs. Specifically, because every player has a different private outcome in an auction protocol, to the best of our knowledge, running any generic MPC protocol among the players would incur at least $n^2$ total cost where $n$ is the number of buyers.We propose a new notion of simulation called {\it utility-dominated emulation} that is sufficient for guaranteeing the game-theoretic properties needed in an auction. Under this new notion of simulation, we show how to design efficient auction protocols with quasilinear efficiency, which gives an $n$-fold improvement over any generic approach.
06 January 2025
Fukuoka, Japan, 25 November - 27 November 2025
Event Calendar
Event date: 25 November to 27 November 2025
Submission deadline: 3 April 2025
Notification: 2 June 2025
Submission deadline: 3 April 2025
Notification: 2 June 2025
Tarragona, Spain, 12 May - 14 May 2025
Event Calendar
Event date: 12 May to 14 May 2025