IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
21 February 2020
Université Jean Monnet, Saint-Etienne, France
A Ph.D. position is open in université Jean Monnet. This Ph.D project aims to develop novel techniques that can protect cryptographic implementations against side-channel attacks and fault attacks. The protection studied will be mainly algorithmic protection, with experimental evaluation of their effectiveness and efficiency. Various directions can be explored with respect to the candidate background.
Closing date for applications:
Contact: Vincent Grosso
PQSecure Technologies, Boca Raton, FL, USA
PQSecure Technologies, LLC is a growing startup company active in the area of post-quantum cryptographic engineering with focus on embedded and IoT devices. PQSecure is currently funded by National Science Foundation SBIR Phase II fund and is an active participant of National Institute of Standards and technology (NIST) for post-quantum cryptography. We are looking for a postdoc/research scientist with post-quantum cryptography and implementations experience and relevant publication records. Candidates should hold a PhD in Computer science/engineering, or electrical engineering, or applied mathematics with excellent programming skills and cryptographic protocol design. PQSecure offers a competitive hiring package including, 401k, health insurance, stock option, 3 weeks of PTO, travel reimbursement for relevant conferences, and etc.). The position is for one year with possibility of renewal based on the performance of the candidate. The salary will be $87,000 per year. PQSecure is located in the beautiful city Boca Raton, FL. The deadline for applications is February 15, 2020. The position will be open until filled.
Closing date for applications:
Contact: Dr. Reza Azarderakhsh razarder[a/t]pqsecurity.com
Junichi Tomida, Nuttapong Attrapadung
At Eurocrypt'19, Attrapadung presented several transformations that dynamically compose a set of attribute-based encryption (ABE) schemes for simpler predicates into a new ABE scheme for more expressive predicates.
Due to the powerful unbounded and modular nature of his compositions, many new ABE schemes can be obtained in a systematic manner (including those that resolved some open problems at the time).
However, his approach heavily relies on so-called q-type assumptions, which are not standard.
Devising such powerful compositions from standard assumptions was left as an important open problem.
In this paper, we present a new framework for constructing ABE schemes that allow unbounded and dynamic predicate compositions among them, and show that the adaptive security of these composed ABE will be preserved by relying only on the standard matrix Diffie-Hellman (MDDH) assumption.
This thus resolves the open problem posed by Attrapadung.
Our framework significantly expands an area of ABEs that are realizable from standard assumptions.
This includes the following adaptively secure large-universe ABEs for Boolean formulae under MDDH.
-- The first completely unbounded monotone key-policy (KP)/ciphertext-policy (CP) ABE. Previously, such ABE has been only recently proposed, but only for the KP and small-universe flavor (Kowalczyk and Wee, Eurocrypt'19).
-- The first completely unbounded non-monotone KP/CP-ABE. Especially, our ABEs support a new type of non-monotonicity that subsumes previous two types of non-monotonicity, namely, by Ostrovsky et al. (CCS'07) and by Okamoto and Takashima (CRYPTO'10).
-- The first non-monotone KP and CP-ABE with constant-size ciphertexts and secret keys, respectively.
-- The first monotone KP and CP-ABE with constant-size secret keys and ciphertexts, respectively.
Changmin Lee, Alexandre Wallet
In ASIACRYPT 2019, Genise et al. describe GGH+19 a new somewhat homomorphic encryption scheme.
The security relies on an inhomogeneous and non-structured variant of the NTRU assumption that they call MiNTRU.
To allow for meaningful homomorphic computations, they use overstretched parameters, but they do not provide an analysis of their new assumption against the state-of-the-art attack of Kirchner and Fouque KF17 for overstretched modulus.
We show that the parameters of GGH+19 do not satisfy the desired security by actually conducting the known analysis.
We also report a successful break of the smallest set of parameters in around 15 hours of computations while they are claimed to reach 100 bits of security.
Itai Dinur
We consider a \emph{collision search problem} (CSP), where given a parameter $C$, the goal is to find $C$ collision pairs in a random function $f:[N] \rightarrow [N]$ (where $[N] = \{0,1,\ldots,N-1\})$ using $S$ bits of memory. Algorithms for CSP have numerous cryptanalytic applications such as space-efficient attacks on double and triple encryption. The best known algorithm for CSP is \emph{parallel collision search} (PCS) published by van Oorschot and Wiener, which achieves the time-space tradeoff $T^2 \cdot S = \tilde{O}(C^2 \cdot N)$.
In this paper, we prove that any algorithm for CSP satisfies $T^2 \cdot S = \tilde{\Omega}(C^2 \cdot N)$, hence the best known time-space tradeoff is optimal (up to poly-logarithmic factors in $N$). On the other hand, we give strong evidence that proving similar unconditional time-space tradeoff lower bounds on CSP applications (such as breaking double and triple encryption) may be very difficult, and would imply a breakthrough in complexity theory. Hence, we propose a new restricted model of computation and prove that under this model, the best known time-space tradeoff attack on double encryption is optimal.
In this paper, we prove that any algorithm for CSP satisfies $T^2 \cdot S = \tilde{\Omega}(C^2 \cdot N)$, hence the best known time-space tradeoff is optimal (up to poly-logarithmic factors in $N$). On the other hand, we give strong evidence that proving similar unconditional time-space tradeoff lower bounds on CSP applications (such as breaking double and triple encryption) may be very difficult, and would imply a breakthrough in complexity theory. Hence, we propose a new restricted model of computation and prove that under this model, the best known time-space tradeoff attack on double encryption is optimal.
Shweta Agrawal, Shota Yamada
Boneh, Waters and Zhandry (CRYPTO 2014) used multilinear maps to provide a solution to the long-standing problem of public-key broadcast encryption (BE) where all parameters in the system are small. In this work, we improve their result by providing a solution that uses only bilinear maps and Learning With Errors (LWE). Our scheme is fully collusion-resistant against any number of colluders, and can be generalized to an identity-based broadcast system with short parameters. Thus, we reclaim the problem of optimal broadcast encryption from the land of Obfustopia.
Our main technical contribution is a ciphertext policy attribute based encryption (CP-ABE) scheme which achieves special efficiency properties its ciphertext size, secret key size, and public key size are all independent of the size of the circuits supported by the scheme. We show that this special CP-ABE scheme implies BE with optimal parameters; but it may also be of independent interest. Our constructions rely on a novel interplay of bilinear maps and LWE, and are proven secure in the generic group model.
Our main technical contribution is a ciphertext policy attribute based encryption (CP-ABE) scheme which achieves special efficiency properties its ciphertext size, secret key size, and public key size are all independent of the size of the circuits supported by the scheme. We show that this special CP-ABE scheme implies BE with optimal parameters; but it may also be of independent interest. Our constructions rely on a novel interplay of bilinear maps and LWE, and are proven secure in the generic group model.
Yindong Chen, Limin Lin, Chuliang Wei
Let $k \ge 2$ be an integer, define $$ S_t^k:=\Bigg\{(a,b)\in \mathbb{Z}^2\ \Big| \ { 0 \le a,b \le 2^{k}-2,\ a+b\equiv t ~(\text{mod} \ 2^k-1),\ \w(a)+\w(b)\le{k-1}}\Bigg\},$$ where $t \in \mathbb{Z}, 1 \le t \le 2^k-2$. This paper gives the upper bound of cardinality of $S_t^k$ when $\w(t)\le 10$, proving that a conjecture proposed by Tu and Deng in the case.
Meher Krishna Duggirala . , . Ravi Duggirala . , . Krishna Subba Rao Pulugurtha
In this paper, a multivariate polynomial and exponential mappings based password protocol is presented. The method can be utilized in public domains. The key generator generates a vector, intended to be used as a password by the authentication protocol subsequently, such that when the vector is substituted and evaluated in certain fixed multivariate polynomials -- that may be listed in a public domain -- the value $0$ is found as a result of proper authentication. The public domain in this context could be internal to a large, and possibly distributed, system. The key generator can take hints from the owner of the password to generate the particular zero vector to suit the user. It may take into consideration biometric and any other user specific information at the time of key generation. The information collected by the key generator can be saved by the owner of the password for its possible retrieval upon requisition by the user, during the period of its validity, in case it is forgotten by the user.
Lior Rotem, Gil Segev, Ido Shahaf
Despite the fundamental importance of delay functions, underlying both the classic notion of a time-lock puzzle and the more recent notion of a verifiable delay function, the only known delay function that offers both sufficient structure for realizing these two notions and a realistic level of practicality is the ``iterated squaring'' construction of Rivest, Shamir and Wagner. This construction, however, is based on rather strong assumptions in groups of hidden orders, such as the RSA group (which requires a trusted setup) or the class group of an imaginary quadratic number field (which is still somewhat insufficiently explored from the cryptographic perspective). For more than two decades, the challenge of constructing delay functions in groups of known orders, admitting a variety of well-studied instantiations, has eluded the cryptography community.
In this work we prove that there are no constructions of generic-group delay functions in cyclic groups of known orders: We show that for any delay function that does not exploit any particular property of the representation of the underlying group, there exists an attacker that completely breaks the function's sequentiality when given the group's order. As any time-lock puzzle and verifiable delay function give rise to a delay function, our result holds for these two notions we well, and explains the lack of success in resolving the above-mentioned long-standing challenge. Moreover, our result holds even if the underlying group is equipped with a $d$-linear map, for any constant $d \geq 2$ (and even for super-constant values of $d$ under certain conditions).
In this work we prove that there are no constructions of generic-group delay functions in cyclic groups of known orders: We show that for any delay function that does not exploit any particular property of the representation of the underlying group, there exists an attacker that completely breaks the function's sequentiality when given the group's order. As any time-lock puzzle and verifiable delay function give rise to a delay function, our result holds for these two notions we well, and explains the lack of success in resolving the above-mentioned long-standing challenge. Moreover, our result holds even if the underlying group is equipped with a $d$-linear map, for any constant $d \geq 2$ (and even for super-constant values of $d$ under certain conditions).
Mihir Bellare, Igors Stepanovs
At the core of Apple's iMessage is a signcryption scheme that involves symmetric encryption of a message under a key that is derived from the message itself. This motivates us to formalize a primitive we call Encryption under Message-Derived Keys (EMDK). We prove security of the EMDK scheme underlying iMessage. We use this to prove security of the signcryption scheme itself, with respect to definitions of signcryption we give that enhance prior ones to cover issues peculiar to messaging protocols. Our provable-security results are quantitative, and we discuss the practical implications for iMessage.
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, Takashi Yamakawa
A non-interactive zero-knowledge (NIZK) protocol enables a prover to convince a verifier of the truth of a statement without leaking any other information by sending a single message.
The main focus of this work is on exploring short pairing-based NIZKs for all NP languages based on standard assumptions.
In this regime, the seminal work of Groth, Ostrovsky, and Sahai (J.ACM'12) (GOS-NIZK) is still considered to be the state-of-the-art.
Although fairly efficient, one drawback of GOS-NIZK is that the proof size is multiplicative in the circuit size computing the NP relation.
That is, the proof size grows by $O(|C|\lambda)$, where $C$ is the circuit for the NP relation and $\lambda$ is the security parameter.
By now, there have been numerous follow-up works focusing on shortening the proof size of pairing-based NIZKs, however, thus far, all works come at the cost of relying either on a non-standard knowledge-type assumption or a non-static $q$-type assumption.
Specifically, improving the proof size of the original GOS-NIZK under the same standard assumption has remained as an open problem.
Our main result is a construction of a pairing-based NIZK for all of NP whose proof size is additive in $|C|$, that is, the proof size only grows by $|C| +\poly(\lambda)$, based on the decisional linear (DLIN) assumption. Since the DLIN assumption is the same assumption underlying GOS-NIZK, our NIZK is a strict improvement on their proof size.
As by-products of our main result, we also obtain the following two results: (1) We construct a perfectly zero-knowledge NIZK (NIPZK) for NP relations computable in NC1 with proof size $|w| \cdot \poly(\lambda)$ where $|w|$ is the witness length based on the DLIN assumption. This is the first pairing-based NIPZK for a non-trivial class of NP languages whose proof size is independent of $|C|$ based on a standard assumption. (2)~We construct a universally composable (UC) NIZK for NP relations computable in NC1 in the erasure-free adaptive setting whose proof size is $|w| \cdot \poly(\lambda)$ from the DLIN assumption. This is an improvement over the recent result of Katsumata, Nishimaki, Yamada, and Yamakawa (CRYPTO'19), which gave a similar result based on a non-static $q$-type assumption.
The main building block for all of our NIZKs is a constrained signature scheme with decomposable online-offline efficiency. This is a property which we newly introduce in this paper and construct from the DLIN assumption. We believe this construction is of an independent interest.
Our main result is a construction of a pairing-based NIZK for all of NP whose proof size is additive in $|C|$, that is, the proof size only grows by $|C| +\poly(\lambda)$, based on the decisional linear (DLIN) assumption. Since the DLIN assumption is the same assumption underlying GOS-NIZK, our NIZK is a strict improvement on their proof size.
As by-products of our main result, we also obtain the following two results: (1) We construct a perfectly zero-knowledge NIZK (NIPZK) for NP relations computable in NC1 with proof size $|w| \cdot \poly(\lambda)$ where $|w|$ is the witness length based on the DLIN assumption. This is the first pairing-based NIPZK for a non-trivial class of NP languages whose proof size is independent of $|C|$ based on a standard assumption. (2)~We construct a universally composable (UC) NIZK for NP relations computable in NC1 in the erasure-free adaptive setting whose proof size is $|w| \cdot \poly(\lambda)$ from the DLIN assumption. This is an improvement over the recent result of Katsumata, Nishimaki, Yamada, and Yamakawa (CRYPTO'19), which gave a similar result based on a non-static $q$-type assumption.
The main building block for all of our NIZKs is a constrained signature scheme with decomposable online-offline efficiency. This is a property which we newly introduce in this paper and construct from the DLIN assumption. We believe this construction is of an independent interest.
Dan Boneh, Saba Eskandarian, Sam Kim, Maurice Shih
An updatable encryption scheme is a symmetric-key encryption scheme that supports key-rotation on ciphertexts. A server that hosts a user's encrypted data can use a user-provided update token to rotate the key under which the data is encrypted while not learning any information about the underlying data.
This work's contributions are threefold. First, we introduce new definitions for updatable encryption (in the ciphertext-dependent setting) that capture desirable security properties not covered in prior work. Next, we construct two new updatable encryption schemes. The first construction relies only on symmetric cryptographic primitives but only supports a bounded number of key rotations. The second supports a (nearly) unbounded number of updates and relies on almost key-homomorphic PRFs. We construct an efficient almost key-homomorphic PRF from the Ring Learning with Errors (RLWE) assumption to concretely instantiate our second construction. Finally, we implement both constructions and compare their performance to prior work. Our RLWE-based construction outperforms an existing updatable encryption scheme based on the hardness of DDH in elliptic-curve groups by over 200x in speed. Our construction based only on symmetric primitives has the highest encryption throughput, approaching the performance of AES, and the highest decryption throughput on ciphertexts that were re-encrypted fewer than fifty times, at which point the RLWE construction dominates.
This work's contributions are threefold. First, we introduce new definitions for updatable encryption (in the ciphertext-dependent setting) that capture desirable security properties not covered in prior work. Next, we construct two new updatable encryption schemes. The first construction relies only on symmetric cryptographic primitives but only supports a bounded number of key rotations. The second supports a (nearly) unbounded number of updates and relies on almost key-homomorphic PRFs. We construct an efficient almost key-homomorphic PRF from the Ring Learning with Errors (RLWE) assumption to concretely instantiate our second construction. Finally, we implement both constructions and compare their performance to prior work. Our RLWE-based construction outperforms an existing updatable encryption scheme based on the hardness of DDH in elliptic-curve groups by over 200x in speed. Our construction based only on symmetric primitives has the highest encryption throughput, approaching the performance of AES, and the highest decryption throughput on ciphertexts that were re-encrypted fewer than fifty times, at which point the RLWE construction dominates.
Fabrice Benhamouda, Huijia Lin
Reducing interaction in Multiparty Computation (MPC) is a highly desirable goal in cryptography. It is known that 2-round MPC can be based on the minimal assumption of 2-round Oblivious Transfer (OT) [Benhamouda and Lin, Garg and Srinivasan, EC 2018], and 1-round MPC is impossible in general. In this work, we propose a natural ``hybrid'' model, called \textbf{multiparty reusable Non-Interactive Secure Computation Market (mrNISC)}. In this model, parties publish encodings of their private inputs $x_i$ at the beginning, once and for all. Later, any subset $I$ of them can compute \emph{on-the-fly} a function $f$ on their inputs $\vec x_I = {\{x_i\}}_{i \in I}$ by just sending a single message to a stateless evaluator, conveying the result $f(\vec x_I)$ and nothing else. Importantly, the input encodings can be \emph{reused} in any number of on-the-fly computations, and the same classical simulation security guaranteed by multi-round MPC, is achieved. In short, mrNISC has minimal yet ``tractable'' interaction pattern.
We initiate the study of mrNISC on several fronts. First, we formalize the security of mrNISC protocols in both a UC definition and a game-based definition. Second, we construct mrNISC protocols in the plain model with semi-honest and semi-malicious security based on bilinear groups. Third, we demonstrate the power of mrNISC by showing two applications: non-interactive MPC (NIMPC) with reusable setup and a distributed version of program obfuscation. In addition, at the core of our construction of mrNISC is a witness encryption scheme for a special language that verifies Non-Interactive Zero-Knowledge (NIZK) proofs of the validity of computations over committed values, which we believe is of independent interest.
We initiate the study of mrNISC on several fronts. First, we formalize the security of mrNISC protocols in both a UC definition and a game-based definition. Second, we construct mrNISC protocols in the plain model with semi-honest and semi-malicious security based on bilinear groups. Third, we demonstrate the power of mrNISC by showing two applications: non-interactive MPC (NIMPC) with reusable setup and a distributed version of program obfuscation. In addition, at the core of our construction of mrNISC is a witness encryption scheme for a special language that verifies Non-Interactive Zero-Knowledge (NIZK) proofs of the validity of computations over committed values, which we believe is of independent interest.
Florian Tramèr, Dan Boneh, Kenneth G. Paterson
Privacy-focused crypto-currencies, such as Zcash or Monero, aim to provide strong cryptographic guarantees for transaction confidentiality and unlinkability. In this paper, we describe side-channel attacks that let remote adversaries bypass these protections.
We present a general class of timing side-channel and traffic-analysis attacks on receiver privacy. These attacks enable an active remote adversary to identify the (secret) payee of any transaction in Zcash or Monero. The attacks violate the privacy goals of these crypto- currencies by exploiting side-channel information leaked by the implementation of different system components. Specifically, we show that a remote party can link all transactions that send funds to a user, by measuring the response time of that users P2P node to certain requests. The timing differences are large enough that the attacks can be mounted remotely over a WAN. We responsibly disclosed the issues to the affected projects, and they have patched the vulnerabilities.
We further study the impact of timing side-channels on the zero-knowledge proof systems used in these crypto-currencies. We observe that in Zcashs implementation, the time to generate a zero-knowledge proof depends on secret transaction data, and in particular on the amount of transacted funds. Hence, an adversary capable of measuring proof generation time could break transaction confidentiality, despite the proof systems zero-knowledge property.
Our attacks highlight the dangers of side-channel leakage in anonymous crypto-currencies, and the need to systematically protect them against such attacks.
Michele Ciampi, Luisa Siniscalchi, Hendrik Waldner
In this work, we provide a compiler that transforms a single-input functional encryption scheme for the class of polynomially bounded circuits into a multi-client functional encryption (MCFE) scheme for the class of separable functions. An n-input function f is called separable if it can be described as a list of polynomially bounded circuits f^1, ... , f^n s.t. f(x_1, ... , x_n)= f^1(x_1)+ ... + f^n(x_n) for all x_1 ,... , x_n.
Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption (MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE but for the less generic class of separable functions. Prior to our work, a long line of results has been proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable function.
We also propose a modified version of the notion of decentralized MCFE introduced by Chotard et al. [Asiacrypt 2018] that we call outsourceable mulit-client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at most n different entities, which will return decryption shares that can be combined (e.g., additively) thus obtaining the output of the computation. This notion is especially useful in the case of a very resource consuming decryption procedure, while the combine algorithm is non-time consuming. We also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same functionality class.
Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption (MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE but for the less generic class of separable functions. Prior to our work, a long line of results has been proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable function.
We also propose a modified version of the notion of decentralized MCFE introduced by Chotard et al. [Asiacrypt 2018] that we call outsourceable mulit-client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at most n different entities, which will return decryption shares that can be combined (e.g., additively) thus obtaining the output of the computation. This notion is especially useful in the case of a very resource consuming decryption procedure, while the combine algorithm is non-time consuming. We also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same functionality class.
Ehsan Aerabi, Milad Bohlouli, MohammadHasan Ahmadi Livany, Mahdi Fazeli, Athanasios Papadimitriou, David Hely
This paper explores the design space of secure communication in ultra-low-energy IoT devices based on Micro-Controller Units (MCUs). It tries to identify, evaluate and compare security-related design choices in a Commercial-Off-The-Shelf (COTS) embedded IoT system which contribute in the energy consumption. We conduct a study over a large group of software-implemented crypto algorithms: symmetric, stream, hash, AEAD, MAC, digital signature and key exchange. A comprehensive report of the targeted optimization attributes (memory, performance and specifically energy) will be presented from over 450 experiments and 170 different crypto source codes. The paper also briefly explores a few system-related choices which can affect the energy consumption of secure communication, namely: architecture choice, communication bandwidth, signal strength and processor frequency. In the end, the paper gives an overview on the obtained results and the contribution of all. Finally it shows, in a case study, how the results could be utilized to have a secure communication in an exemplary IoT device. This paper gives IoT designers an insight on the ultra-low-energy security, helps them to choose appropriate cryptographic algorithms, reduce trial-and-error of alternatives, save effort and hence cut the design costs.
M. Sadegh Riazi, Seyed M. Chavoshian, Farinaz Koushanfar
Authentication and identification methods based on human fingerprints are ubiquitous in several systems ranging from government organizations to consumer products. The performance and reliability of such systems directly rely on the volume of data on which they have been verified. Unfortunately, a large volume of fingerprint databases is not publicly available due to many privacy and security concerns. In this paper, we introduce a new approach to automatically generate high-fidelity synthetic fingerprints at scale. Our approach relies on (i) Generative Adversarial Networks to estimate the probability distribution of human fingerprints and (ii) Super- Resolution methods to synthesize fine-grained textures. We rigorously test our system and show that our methodology is the first to generate fingerprints that are computationally indistinguishable from real ones, a task that prior art could not accomplish.
19 February 2020
Sanjam Garg, Xiao Liang, Omkant Pandey, Ivan Visconti
We construct a general purpose secure multiparty computation protocol which remains secure under (a-priori) bounded-concurrent composition and makes only black-box use of cryptographic primitives. Prior to our work, constructions of such protocols required non-black-box usage of cryptographic primitives; alternatively, black-box constructions could only be achieved for super-polynomial simulation based notions of security which offer incomparable security guarantees.
Our protocol has a constant number of rounds and relies on standard polynomial-hardness assumptions, namely, the existence of semi-honest oblivious transfers and collision-resistant hash functions. Previously, such protocols were not known even under sub-exponential assumptions.
Our protocol has a constant number of rounds and relies on standard polynomial-hardness assumptions, namely, the existence of semi-honest oblivious transfers and collision-resistant hash functions. Previously, such protocols were not known even under sub-exponential assumptions.
Megumi Ando, Anna Lysyanskaya
Onion routing is a popular, efficient and scalable method for enabling anonymous communications. To send a message m to Bob via onion routing, Alice picks several intermediaries, wraps m in multiple layers of encryption one per intermediary and sends the resulting onion to the first intermediary. Each intermediary peels a layer of encryption and learns the identity of the next entity on the path and what to send along; finally Bob learns that he is the recipient, and recovers the message m.
Despite its wide use in the real world (e.g., Tor, Mixminion), the foundations of onion routing have not been thoroughly studied. In particular, although two-way communication is needed in most instances, such as anonymous Web browsing, or anonymous access to a resource, until now no definitions or provably secure constructions have been given for two-way onion routing.
In this paper, we propose an ideal functionality for a repliable onion encryption scheme and provide a construction that UC-realizes it.
Despite its wide use in the real world (e.g., Tor, Mixminion), the foundations of onion routing have not been thoroughly studied. In particular, although two-way communication is needed in most instances, such as anonymous Web browsing, or anonymous access to a resource, until now no definitions or provably secure constructions have been given for two-way onion routing.
In this paper, we propose an ideal functionality for a repliable onion encryption scheme and provide a construction that UC-realizes it.
Charlotte Bonte, Nigel P. Smart, Titouan Tanguy
Following recent comments in a NIST document related to threshold cryptographic standards, we examine the case of thresholdizing the HashEdDSA signature scheme. This is a deterministic signature scheme based on Edwards elliptic curves. Unlike DSA, it has a Schnorr like signature equation, which is an advantage for threshold implementations, but it has the disadvantage of having the ephemeral secret obtained by hashing the secret key and the message. We show that one can obtain relatively efficient implementations of threshold HashEdDSA with no modifications to the behaviour of the signing algorithm; we achieve this using a doubly-authenticated bit (daBit) generation protocol tailored for Q2 access structures, that is more efficient than prior work. However, if one was to modify the standard algorithm to use an MPC-friendly hash function, such as Rescue, the performance becomes very fast indeed.