International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

02 December 2020

Gabrielle De Micheli, Nadia Heninger
ePrint Report ePrint Report
Side-channel attacks targeting cryptography may leak only partial or indirect information about the secret keys. There are a variety of techniques in the literature for recovering secret keys from partial information. In this tutorial, we survey several of the main families of partial key recovery algorithms for RSA, (EC)DSA, and (elliptic curve) Diffie-Hellman, the public-key cryptosystems in common use today. We categorize the known techniques by the structure of the information that is learned by the attacker, and give simplified examples for each technique to illustrate the underlying ideas.
Expand
Mariusz Jurkiewicz
ePrint Report ePrint Report
In this paper we construct and consider a signature scheme with evolving secret key, where there is used Type 3 pairing. The idea is based on some properties of binary trees, with a number of leaves being the same as a number of time periods in the scheme. This lets us to gain such conditions, that allows to prove the forward-security of the considered scheme in the random oracle model. The proof is conducted by reducing the security of the scheme to the difficulty of solving a certain counterpart of the Weak $\ell$-th Bilinear Diffie-Hellman Inversion problem. In addition to that, we construct an interactive signature scheme with evolving private key and justify that it is forward-secure blind scheme.
Expand
Ben Nassi, Lior Rokach, Yuval Elovici
ePrint Report ePrint Report
Seven years ago, a famous case in which data from a Fitbit tracker was used in the courtroom in a personal injury case heralded a new age: the age of testifying wearable devices. Prior to that, data from wearable devices was used in various areas, including medicine, advertising, and scientific research, but the use of such data in the Fitbit case attracted the interest of a new sector: the legal sector. Since then, lawyers, investigators, detectives, and police officers have used data from pacemakers and smartwatches in order to prove/disprove allegations regarding wearable device owners in several well-known cases (sexual assault, arson, personal injury, etc.). In this paper, we discuss testifying wearable devices. We explain the advantages of wearable devices over traditional IoT devices in the legal setting, the parties involved in cases in which a wearable device was used to testify against/for the device owner, and the information flow. We then focus on an interesting area of research: intoxication detection. We explain the motivation to detect whether a subject was intoxicated and explain the primary scientific gap in this area. In order to overcome this gap, we suggest a new method for detecting whether a subject was intoxicated based on free gait data obtained from a wearable device. We evaluate the performance of the proposed method in a user study involving 30 subjects and show that motion sensor data obtained from a smartphone and fitness tracker from eight seconds of free gait can indicate whether a subject is/was intoxicated (obtaining an AUC of 0.97) and thus be used as testimony. Finally, we analyze the current state and the near future of the age of testifying wearable devices and explain why we believe that (1) we are still at the beginning of this age despite the fact that seven years has passed since the original court case, and (2) the number of cases in which wearable device data is used to testify for/against the device owner is expected to increase significantly in the next few years.
Expand
Satoshi Okada, Yuntao Wang
ePrint Report ePrint Report
CRYSTALS-KYBER and SABER are two lattice-based encryption algorithms in the third round finalists of NIST’s post-quantum cryptography standardization project. In ProvSec 2020, Wang et al. introduced a notion of “meta-PKE” for (ring) Learning With Errors crypto mechanism. They also proposed a key reuse attack on NewHope and LAC cryptosystems which meet the meta-PKE model. In their attack, the encryptor Bob’s partial (or even all) secrets can be recovered under the key reuse scenario. In this paper, we consider the meta-PKE model inCRYSTALS-KYBER and SABER. By improving Wang et al.’s method, we show that our proposed attacks cost only 4, 3, and 4 queries to recover Bob’s secrets for any security levels of I (AES-128), III (AES-192), and V (AES-256), respectively in CRYSTALS-KYBER. Simultaneously, only 6, 4, and 4 queries are required to recover Bob’s secret for security levels I, III, and V in SABER.
Expand
Kamil Kluczniak
ePrint Report ePrint Report
In a witness encryption scheme, to decrypt a ciphertext associated with an NP statement, the decrypter takes as input a witness testifying that the statement is in the language. When the statement is not in the language, then the message is hidden. Thus far, the only provably secure constructions assume the existence of indistinguishability obfuscation (iO) and multilinear maps (MMaps).

We make progress towards building polynomially efficient witness encryption for NP without resorting to iO or MMaps. In particular, we give a witness encryption scheme from Yao's garbled circuit technique and a new type of fully homomorphic encryption (FHE) that we call annihilating. Interestingly, we require a version of the annihilating FHE that is circularly insecure, i.e., allows testing the presence of a key cycle. We prove our witness encryption's security from a novel assumption about our annihilating FHE. We formulate the assumption as an interplay between an annihilating FHE and ideal ciphers. We show a candidate (leveled) annihilating FHE built from a multikey variant of the BGV/BFV fully homomorphic cryptosystems.
Expand
Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li, Rachit Agarwal, Thomas Ristenpart
ePrint Report ePrint Report
We present PANCAKE, the first system to protect key-value stores from access pattern leakage attacks with small constant factor bandwidth overhead. PANCAKE uses a new approach, that we call frequency smoothing, to transform plaintext accesses into uniformly distributed encrypted accesses to an encrypted data store. We show that frequency smoothing prevents access pattern leakage attacks by passive persistent adversaries in a new formal security model. We integrate PANCAKE into three key-value stores used in production clusters, and demonstrate its practicality: on standard benchmarks, PANCAKE achieves 229× better throughput than non-recursive Path ORAM - within 3–6× of insecure baselines for these key-value stores.
Expand
Alex B. Grilo, Huijia Lin, Fang Song, Vinod Vaikuntanathan
ePrint Report ePrint Report
MiniQCrypt is a world where quantum-secure one-way functions exist, and quantum communication is possible. We construct an oblivious transfer (OT) protocol in MiniQCrypt that achieves simulation-security in the plain model against malicious quantum polynomial-time adversaries, building on the foundational work of Bennett, Brassard, Crépeau and Skubiszewska (CRYPTO 1991). Combining the OT protocol with prior works, we obtain secure two-party and multi-party computation protocols also in MiniQCrypt. This is in contrast to the classical world, where it is widely believed that one-way functions alone do not give us OT.

In the common random string model, we achieve a constant-round universally composable (UC) OT protocol.
Expand
Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, Doreen Riepel
ePrint Report ePrint Report
The Hybrid Public Key Encryption (HPKE) scheme is an emerging standard currently under consideration by the Crypto Forum Research Group (CFRG) of the IETF as a candidate for formal approval. Of the four modes of HPKE, we analyse the authenticated mode HPKE_Auth in its single-shot encryption form as it contains what is, arguably, the most novel part of HPKE and has applications to other upcoming standards such as MLS.

HPKE_Auth’s intended application domain is captured by a new primitive which we call Authenticated Public Key Encryption (APKE). We provide syntax and security definitions for APKE schemes, as well as for the related Authenticated Key Encapsulation Mechanisms (AKEMs). We prove security of the AKEM scheme DH-AKEM underlying HPKE Auth based on the Gap Diffie-Hellman assumption and provide general AKEM/DEM composition theorems with which to argue about HPKE_Auth’s security. To this end, we also formally analyse HPKE_Auth’s key schedule and key derivation functions. To increase confidence in our results we use the automatic theorem proving tool CryptoVerif. All our bounds are quantitative and we discuss their practical implications for HPKE_Auth.

As an independent contribution we propose the new framework of nominal groups that allows us to capture abstract syntactical and security properties of practical elliptic curves, including the Curve25519 and Curve448 based groups (which do not constitute cyclic groups).
Expand
Olivier Sanders, Jacques Traoré
ePrint Report ePrint Report
EPID systems are anonymous authentication protocols where a device can be revoked by including one of its signatures in a revocation list. Such protocols are today included in the ISO/IEC 20008-2 standard and are embedded in billions of chips, which make them a flagship of advanced cryptographic tools. Yet, their security analysis is based on a model that suffers from several important limitations, which either questions the security assurances EPID can provide in the real world or prevents such systems from achieving their full impact. The most prominent example is the one of revocation lists. Although they could be managed locally by verifiers, which would be natural in most use-cases, the security model assumes that they are managed by a trusted entity, a requirement that is not easily met in practice and that is thus tempting to ignore, as illustrated in the corresponding standard.

In this paper, we propose to revisit the security model of EPID, by removing some limitations of previous works but mostly by answering the following question: what can we achieve when revocation lists are generated by a malicious entity?

Surprisingly, even in this disadvantageous context, we show that it is possible to retain strong properties that we believe to better capture the spirit of EPID systems. Moreover, we show that we can construct very efficient schemes resisting such powerful adversaries by essentially tweaking previous approaches. In particular, our constructions do not require to perform any significant test on the revocation lists during the signature generation process. These constructions constitute the second contribution of this paper.
Expand
Michael Scott
ePrint Report ePrint Report
Optimization of finite field arithmetic is important for the deployment of public key cryptography, particularly in the context of elliptic curve cryptography. Until now the primary concern has been operations over the prime field $\F_p$, where $p$ is a prime. With the advent of pairing-based cryptography there arises a need to also look at optimal arithmetic over extension fields $\F_{p^n}$ for small values of $n$. Here we focus on the determination of quadratic residuosity and the calculation of inverses and square roots over these fields, operations often carried out in conjunction with one another. We demonstrate with a minor improvement in a hash-to-curve algorithm, and a major speed-up in the calculation of square roots in quadratic extensions.
Expand

01 December 2020

Radboud University, Nijmegen
Job Posting Job Posting
We have 3 open positions for PhD students in the area of symmetric cryptography in the Digital Security group at Radboud University in Nijmegen. One position is on the study of provable security of modes of use, one on design of primitives supported by cryptanalysis, and one on protection against implementation attacks based on power, electromagnetic side channel analysis, and fault attacks. We focus hereby on cryptography based on permutations as in the sponge, duplex and farfalle constructions, especially suited for low energy consumption.

The Digital Security Group of Radboud University is one of the leading groups in computer security in the Netherlands and Europe, and one of the pioneers in permutation-based crypto and corresponding leakage-resilient modes.

The successful candidate should ideally have a master in Computer Science, Mathematics, or Electrical Engineering. Applications will be considered until the positions are filled.

To apply, please send the following documents to dis-secr (at) cs.ru.nl, with the subject "PhD position in symmetric crypto":
- a motivation letter
- your cv
- your master diploma certificate (scanned)
- transcript of the courses you took (including grades)
- up to 3 references

Closing date for applications:

Contact: To enquire about the positions you can contact: Joan Daemen, joan (at) cs.ru.nl, Lejla Batina, lejla (at) cs.ru.nl, and Bart Mennink, b.mennink (at) cs.ru.nl

Expand
Aalborg University, Department of Electronic Systems; Copenhagen, Denmark
Job Posting Job Posting
The stipend is open for appointment from April 1, 2021, or soon as possible thereafter.

We seek a PhD in Security in thing-to-cloud IoTalentum (http://www.iotalentum.eu) architectures for IoT ecosystems. The objective of the research is to identify and describe new models mapping, quantifying, forecasting and ensuring adequate levels of privacy and security within the distributed computing centers the IoTalentum cloud-to-thing continuum. To develop and testing of a hardware-free identification tool for computing centers to increase the level of security and privacy of collected data in IoT virtual environments.

The PhD is part of the opening of 15 Early Stage Researchers (ESRs) positions within the IoTalentum project (www.iotalentum.eu). IoTalentum is a European Training Network (ETN) funded by the European Commission under the Horizon 2020 Marie Sklodowska-Curie Action (MSCA). The MSCA ITN programme offers a highly competitive and attractive salary and working conditions.

Eligibility Criteria
The applicants must, at the date of the call deadline, comply with the following eligibility criteria:
  • To hold a MSc degree (or equivalent) in Engineering, Mathematics, Physics or a related field.
  • To have not been awarded a doctoral degree.
  • At the time of recruitment by the host organization, candidates should be in the first four years (full-time equivalent research experience) of their research career.
  • Candidates must comply with the European Commission’s mobility rule, meaning at the time of recruitment by the host organization, they must not have resided or carried out their main activity (work, studies, etc.) in the country of the host organization for more than 12 months in the 3 years immediately before the starting employment contract date. Compulsory national service and/or short stays such as holidays are not taken into account. The positions are open to all nationalities.
  • To be proficient in English language

Closing date for applications:

Contact: Prof. Knud Erik Skouby (skouby@cmi.aau.dk) and Assoc. Prof. Sokol Kosta (sok@cmi.aau.dk)

More information: https://www.stillinger.aau.dk/vis-stilling/?vacancy=1134091

Expand
DingLab, Beijing Institute of Mathematical Sciences and Applications; Beijing, China
Job Posting Job Posting

Multiple positions on all levels at the Ding Lab in Privacy Protection and Blockchain Security at the Beijing Institute of Mathematical Sciences and Applications(BIMSA)

The BIMSA is a Mathematics research institution co-sponsored by Beijing Municipal Government and Tsinghua University. The BIMSA is located in the Huairou District of Beijing, and is part of Beijing’s strategic plans to build world-class new-style research & development institutions and national innovation center for science and technology. The BIMSA aims to develop fundamental scientific research and build a bridge between mathematics and industry applications. The director of BIMSA is the renowned mathematician, Prof. Shing-Tung Yau.

The Ding Lab in Privacy Protection and Blockchain Security will be led by Professor Jintai Ding and the lab currently has multiple open positions on all levels from full tenured professor to postdoc and research associate (without PhD) Anyone who works in related areas including (but not restricted to) computational algebra, computational algebraic geometry, number theory, mathematical optimization, quantum algorithms, post-quantum cryptography, multi-party computation, zero-knowledge proof, fully homomorphic encryption, privacy preserving algorithms, block chain, high performance computing, and algorithm implementations are welcome to apply. BIMSA offers internationally competitive salary packages and salary will be determined by applicant's qualification. Recent PhDs are especially encouraged to apply. A typical appointment for postdoc of BIMSA is for two-years, renewable for the third year with annual salary ranges from 300,000 RMB to 500,000 RMB depending on experience and qualifications. Ding Lab is an open lab with English as a working language. Interested applicants, please send email with CV to DingLab@bimsa.cn.

Closing date for applications:

Contact: Jintai Ding

Expand

29 November 2020

Mikhail Anokhin
ePrint Report ePrint Report
In this paper, we study the connections between pseudo-free families of computational $\Omega$-algebras (in appropriate varieties of $\Omega$-algebras for suitable finite sets $\Omega$ of finitary operation symbols) and certain standard cryptographic primitives. We restrict ourselves to families $(H_d)_{d\in D}$ of computational $\Omega$-algebras (where $D\subseteq\{0,1\}^*$) such that for every $d\in D$, each element of $H_d$ is represented by a single bit string of length polynomial in the length of $d$. Very loosely speaking, our main results are as follows: (i) pseudo-free families of computational mono-unary algebras with one-to-one fundamental operations (in the variety of all mono-unary algebras) exist if and only if one-way families of permutations exist; (ii) for any $m\ge2$, pseudo-free families of computational $m$-unary algebras with one-to-one fundamental operations (in the variety of all $m$-unary algebras) exist if and only if claw-resistant families of $m$-tuples of permutations exist; (iii) for a certain $\Omega$ and a certain variety $\mathfrak V$ of $\Omega$-algebras, the existence of pseudo-free families of computational $\Omega$-algebras in $\mathfrak V$ implies the existence of families of trapdoor permutations.
Expand
Seyedeh Sharareh Mirzargar, Gaiëtan Renault, Andrea Guerrieri, Mirjana Stojilović
ePrint Report ePrint Report
An important security risk in cloud Field-Programmable Gate Arrays (FPGAs) is power wasting, occurring when a design exercises excessive switching activity with the intention to cause voltage-drop related faults in the host FPGA or, in the extreme case, FPGA reset and denial-of-service. In this paper, we introduce the idea of infiltrating undercover sensors for monitoring the fluctuations of FPGA core voltage. Our approach ensures that the shell has full control over sensor placement, done so that FPGA users do not have to sacrifice an inch of their design space nor to be aware that the voltage-fluctuations caused by their design are being monitored. Additionally, we describe how to design voltage-drop sensors that have higher coverage than the state-of-the-art alternatives and experimentally demonstrate that our sensors are indeed able to accurately monitor voltage fluctuations across the entire FPGA. Finally, we propose a novel metric which, after applied on sensor measurements, reveals the location of the source of the highest activity on the FPGA.
Expand
Seyedeh Sharareh Mirzargar, Gaiëtan Renault, Andrea Guerrieri, Mirjana Stojilović
ePrint Report ePrint Report
With every new generation, high-end FPGAs are becoming richer in features and resources, making the usage model of single-user per FPGA decreasingly cost-efficient. Although virtualized FPGAs enable multiple users to share the same FPGA, this multi-tenancy is not employed in practice because of potential security threats, such as voltage attacks. These attacks use power-wasting circuits to exercise excessive switching activity on the target FPGA to cause extreme voltage fluctuations, which produce timing faults in collocated circuits or, in extreme cases, reset target FPGA. In this work, we present the idea of automated embedding of the on-chip voltage sensors into the virtualized FPGAs and continuous monitoring of the core voltage for suspected fluctuations caused by a voltage attacker. Our sensors are nonintrusive and placement-adaptive because we implement them immediately after placing and routing the user design with resources that are left unused. We devise a novel measurement technique to continuously analyze the sensor outputs and locate the power-wasting circuits. Additionally, we are the first to use a synchronous power-wasting attacker, capable of producing timing faults, on Xilinx 7-series FPGAs and to successfully locate it. Hence, our proposed monitoring system enables the virtualized FPGA to identify the voltage attackers, at minimal cost, and prevent them from repeating the attack.
Expand
Daniel J. Bernstein
ePrint Report ePrint Report
This paper presents detailed and computer-verified proofs of formulas that, given a permutation pi of 2^m indices with m>=1, produce control bits for a standard permutation network that uses 2^m(m-1/2) swaps to apply pi to a list. The formulas match the control bits computed by a serial algorithm of Stone (1968) and a parallel algorithm of Nassimi–Sahni (1982). The proofs are a step towards computer-verified correctness proofs for efficient implementations of these algorithms.
Expand
Thomas Kaeding
ePrint Report ePrint Report
We examine some historical proto-mechanical cryptographic devices, such as the Wheatstone Cryptograph, that employ revolving clock hands or rotating concentric disks. The action of these “cipher clocks” can be factored into a stream cipher followed by a monoalphabetic substitution. This allows us to perform a stochastic hill-climbing attack to break the substitution. The attack maximizes a fitness that measures how well a decryption of the substitution cipher resembles an encryption of the stream cipher alone.
Expand
Julia Len, Paul Grubbs, Thomas Ristenpart
ePrint Report ePrint Report
In this paper we introduce partitioning oracles, a new class of decryption error oracles which, conceptually, take a ciphertext as input and output whether the decryption key belongs to some known subset of keys. Partitioning oracles can arise when encryption schemes are not committing with respect to their keys. We detail adaptive chosen ciphertext attacks that exploit partitioning oracles to efficiently recover passwords and de-anonymize anonymous communications. The attacks utilize efficient key multi-collision algorithms --- a cryptanalytic goal that we define --- against widely used authenticated encryption with associated data (AEAD) schemes, including AES-GCM, XSalsa20/Poly1305, and ChaCha20/Poly1305.

We build a practical partitioning oracle attack that quickly recovers passwords from Shadowsocks proxy servers. We also survey early implementations of the OPAQUE protocol for password-based key exchange, and show how many could be vulnerable to partitioning oracle attacks due to incorrectly using non-committing AEAD. Our results suggest that the community should standardize and make widely available committing AEAD to avoid such vulnerabilities.
Expand
Angèle Bossuat, Xavier Bultel
ePrint Report ePrint Report
Sanitizable signatures (SaS) allow a (single) sanitizer, chosen by the signer, to modify and re-sign a message in a somewhat controlled way, that is, only editing parts (or blocks) of the message that are admissible for modification.

This primitive is an efficient tool, with many formally defined security properties, such as unlinkability, transparency, immutability, invisibility, and unforgeability. An SaS scheme that satisfies these properties can be a great asset to the privacy of any field it will be applied to, e.g., anonymizing medical files.

In this work, we look at the notion of γ-sanitizable signatures ( γSaS): we take the sanitizable signatures one step further by allowing the signer to not only decide which blocks can be modified, but also how many of them at most can be modified within a single sanitization, setting a limit, denoted with γ. We adapt the security properties listed above to γSaS and propose our own scheme, ULISS (Unlinkable Limited Invisible Sanitizable Signature), then show that it verifies these properties. This extension of SaS can not only improve current use cases, but also introduce new ones, e.g., restricting the number of changes in a document within a certain timeframe.
Expand
◄ Previous Next ►