02 January 2021
Ismail San
This study presents a method to perform low-latency modular multiplication operation based on both Montgomery and Ozturk methods. The design space exploration of the proposed method on a latest FPGA device is also given. Through series of experiments on the FPGA using an high-level synthesis tool, optimal parameter selection of the proposed method for the low-latency constraint is also presented for the proposed technique.
Mahdi Mahdavi Oliaee, Zahra Ahmadian
We present the first Ciphertext Policy Attribute Based Encryption (CP-ABE) scheme where access policies are expressed as arithmetic circuits. The idea is first introduced as a basic design based on the multilinear map. Then, two improved versions of that, with or without the property of hidden attributes, are introduced. We also define the concept of Hidden Result Attribute Based Encryption (HR-ABE) which means that the result of the arithmetic function is hidden from the users. We prove that the proposed schemes have adaptive security, under the assumption of the hardness of the (k-1)-Distance Decisional Diffie-
Hellman problem.
Dingfeng Ye
Existing lattice signature schemes are much less efficient than encryption schemes due to the rejection sampling paradigm. We give a construction of comparable efficiency with lattice encryption that avoids sampling using structured secrets together with temporary keys. Structured secrets (and randoms) also improve existing lattice encryption schemes to nearly the same extreme efficiency. Our signature scheme allows the same parameters of any encryption schemes (a variation of the basic form is
needed when the modulus is as small as 1-byte) and has comparable efficiency with our extreme encryption efficiency. For lightweight implementation, our techniques allow integrating of public-key encryption and signature in a simple circuit which only needs to do small integer additions as the main part of the computation.
2-Step Multi-Client Quadratic Functional Encryption from Decentralized Function-Hiding Inner-Product
Michel Abdalla, David Pointcheval, Azam Soleimanian
In this paper, we present a multi-client quadratic functional encryption (MCQFE) scheme from function-hiding inner-product (FHIP). The main challenge in such construction is that all the clients require the access to the master secret key of the underlying FHIP scheme, which clearly breaches the security.
To overcome this challenge, we present an efficient decentralized version of FHIP scheme of Lin (Crypto 16). This leads to a 2-step MCQFE (2-MCQFE) scheme. In a 2-step MCQFE scheme, the encryption phase is a (non-interactive) protocol among clients and a set of honest-but-curious authorities. More precisely, clients are the owner of messages and the master secret-key of the underlying FHIP is shared among authorities. In the first step, the client publishes a pre-ciphertext ``pct'' associated with its message. Then in the second step, each authority generates its share ``ct_i'' extracted from the pre-ciphertext. The public aggregation of these shares ``ct_i'' will generate the target ciphertext ``ct'' which then would be applied on the functional key ``sk_F'' to compute the quadratic functionality. The security model is strong enough to consider no trust among clients and authorities, and also the revelation of some secret keys (of clients or authorities) through corruptions. We instantiate our 2-MCQFE scheme and prove its security in the random-oracle model based on the SXDH assumption. Moreover, we show that its security holds as long as at least one of the authorities is not corrupted.
To overcome this challenge, we present an efficient decentralized version of FHIP scheme of Lin (Crypto 16). This leads to a 2-step MCQFE (2-MCQFE) scheme. In a 2-step MCQFE scheme, the encryption phase is a (non-interactive) protocol among clients and a set of honest-but-curious authorities. More precisely, clients are the owner of messages and the master secret-key of the underlying FHIP is shared among authorities. In the first step, the client publishes a pre-ciphertext ``pct'' associated with its message. Then in the second step, each authority generates its share ``ct_i'' extracted from the pre-ciphertext. The public aggregation of these shares ``ct_i'' will generate the target ciphertext ``ct'' which then would be applied on the functional key ``sk_F'' to compute the quadratic functionality. The security model is strong enough to consider no trust among clients and authorities, and also the revelation of some secret keys (of clients or authorities) through corruptions. We instantiate our 2-MCQFE scheme and prove its security in the random-oracle model based on the SXDH assumption. Moreover, we show that its security holds as long as at least one of the authorities is not corrupted.
31 December 2020
Yi Chen, Hongbo Yu
Gohr improved attacks on 11-round Speck32/64 using deep
learning [17] at Crypto 2019, which is the first work of neural aided
cryptanalysis. But we find that the key recovery attack model proposed
by Gohr is limited by several properties.
It relies heavily on the neutral bit which doesnt always exist in the attacked cipher.
Besides, the data complexity, computation complexity, and success rate can only be
estimated through the practical attack.
In this paper, we propose a neural aided statistical attack that can be as generic as the differential cryptanalysis. It has no special requirements about the attacked cipher and allows us to estimate the theoretical complexities and success rate. For reducing the key space to be searched, we propose a Bit Sensitivity Test to identify which ciphertext bit is informative. Then specific key bits can be recovered by building neural distinguishers on related ciphertext bits. Applications to round reduced Speck32/64, Speck48/72, Speck48/96, DES prove the correctness and superiorities of our neural aided statistical attack.
In this paper, we propose a neural aided statistical attack that can be as generic as the differential cryptanalysis. It has no special requirements about the attacked cipher and allows us to estimate the theoretical complexities and success rate. For reducing the key space to be searched, we propose a Bit Sensitivity Test to identify which ciphertext bit is informative. Then specific key bits can be recovered by building neural distinguishers on related ciphertext bits. Applications to round reduced Speck32/64, Speck48/72, Speck48/96, DES prove the correctness and superiorities of our neural aided statistical attack.
Paul Kirchner, Pierre-Alain Fouque
We revisit some well-known cryptographic problems in a black box modular ring model of computation. This model allows us to compute with black box access to the ring $\mathbb{Z}/m\mathbb{Z}$. We develop new generic ring algorithms to recover $m$ even if it is unknown. At the end, Maurer's generic algorithm allows to recover an element from its black box representation. However, we avoid Maurer's idealized model with CDH oracle for the multiplication in the hidden ring by introducing a new representation compatible with ring operations. An element is encoded by its action over the factor basis. Consequently, we can multiply two elements with classical descent computations in sieving algorithms. As the algorithms we propose work without using an expensive linear algebra computation at the end, even though they manipulate large sparse matrices, we can exploit a high-level of parallelism.
Then, we consider general groups such as imaginary quadratic class group and the Jacobian of a hyperelliptic curve, and obtain new methods for group order computation. The repeated squaring problem and the adaptive root problem used in the construction of Verifiable Delay Functions are particularly easy to solve in the black box modular ring, the high degree of parallelism provided by our method allows a reduction in the time to solve them. We improve the smoothing time, and as a result, we break Verifiable Delay Functions and factorize weak keys with lower Area-Time cost.
Finally, we show new AT costs for computing a discrete logarithm over an adversarial basis in finite fields.
Then, we consider general groups such as imaginary quadratic class group and the Jacobian of a hyperelliptic curve, and obtain new methods for group order computation. The repeated squaring problem and the adaptive root problem used in the construction of Verifiable Delay Functions are particularly easy to solve in the black box modular ring, the high degree of parallelism provided by our method allows a reduction in the time to solve them. We improve the smoothing time, and as a result, we break Verifiable Delay Functions and factorize weak keys with lower Area-Time cost.
Finally, we show new AT costs for computing a discrete logarithm over an adversarial basis in finite fields.
Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, Nicholas Spooner
Proof-carrying data (PCD) is a powerful cryptographic primitive that enables mutually distrustful parties to perform distributed computations that run indefinitely. Known approaches to construct PCD are based on succinct non-interactive arguments of knowledge (SNARKs) that have a succinct verifier or a succinct accumulation scheme for their proofs.
In this paper we show how to obtain PCD without relying on SNARKs. We construct a PCD scheme given any non-interactive argument of knowledge (e.g., with linear-size proofs) that has a *split accumulation scheme*, which is a weak form of accumulation that we introduce.
We additionally construct a transparent non-interactive argument of knowledge for R1CS whose accumulation is verifiable via a *constant number of group and field operations*. This leads, via the random oracle heuristic and our result above, to efficiency improvements for PCD. Along the way, we construct a split accumulation scheme for a simple polynomial commitment scheme based on Pedersen commitments.
Our results are supported by a modular and efficient implementation.
In this paper we show how to obtain PCD without relying on SNARKs. We construct a PCD scheme given any non-interactive argument of knowledge (e.g., with linear-size proofs) that has a *split accumulation scheme*, which is a weak form of accumulation that we introduce.
We additionally construct a transparent non-interactive argument of knowledge for R1CS whose accumulation is verifiable via a *constant number of group and field operations*. This leads, via the random oracle heuristic and our result above, to efficiency improvements for PCD. Along the way, we construct a split accumulation scheme for a simple polynomial commitment scheme based on Pedersen commitments.
Our results are supported by a modular and efficient implementation.
Steve Thakur
We study non-interactive arguments of knowledge (AoKs) for commitments in groups of hidden order. We provide protocols whereby a Prover can demonstrate certain properties of and relations between committed sets/multisets, with succinct proofs that are publicly verifiable against the constant-sized commitments. In particular, we provide AoKs for the disjointness of committed sets/multisets in cryptographic accumulators, with a view toward applications to verifiably outsourcing data storage and sharded stateless blockchains.
Recent work ([DGS20]) suggests that the hidden order groups need to be substantially larger in size that previously thought, in order to ensure the desired security level. Thus, in order to keep the communication complexity between the Prover and the the Verifier to a minimum, we have designed the protocols so that the proofs entail a constant number of group elements, independent of the number of the committed sets/multisets rather than just independent of the sizes of these sets/multisets.
If the underlying group of hidden order is an appropriate imaginary quadratic class group or a genus three Jacobian, the argument systems are transparent. Furthermore, since all challenges are public coin, the protocols can be made non-interactive using the Fiat-Shamir heuristic. We build on the techniques from [BBF19] and [Wes18].
Recent work ([DGS20]) suggests that the hidden order groups need to be substantially larger in size that previously thought, in order to ensure the desired security level. Thus, in order to keep the communication complexity between the Prover and the the Verifier to a minimum, we have designed the protocols so that the proofs entail a constant number of group elements, independent of the number of the committed sets/multisets rather than just independent of the sizes of these sets/multisets.
If the underlying group of hidden order is an appropriate imaginary quadratic class group or a genus three Jacobian, the argument systems are transparent. Furthermore, since all challenges are public coin, the protocols can be made non-interactive using the Fiat-Shamir heuristic. We build on the techniques from [BBF19] and [Wes18].
30 December 2020
Fan Peng, Hao Chen, Chang-An Zhao
In Chen-Cramer Crypto 2006 paper \cite{cc} algebraic geometric secret sharing schemes were proposed such that the ``Fundamental Theorem in Information-Theoretically Secure Multiparty Computation" by Ben-Or, Goldwasser and Wigderson \cite{BGW88} and Chaum, Cr\'{e}peau and Damg{\aa}rd \cite{CCD88} can be established over constant-size base
finite fields. These algebraic geometric secret sharing schemes defined by a curve of genus $g$ over a constant size finite field ${\bf F}_q$ is quasi-threshold in the following sense, any subset of $u \leq T-1$ players (non qualified) has no information of the secret and any subset of $u \geq T+2g$ players (qualified) can reconstruct the secret. It is natural to ask that how far
from the threshold these quasi-threshold secret sharing schemes are? How many subsets of $u \in [T, T+2g-1]$ players can recover the secret or have no information of the secret?
In this paper it is proved that almost all subsets of $u \in [T,T+g-1]$ players have no information of the secret and almost all subsets of $u \in [T+g,T+2g-1]$ players can reconstruct the secret when the size $q$ goes to the infinity and the genus satisfies $\lim \frac{g}{\sqrt{q}}=0$. Then algebraic geometric secretsharing schemes over large finite fields are asymptotically threshold in this case. We also analyze the case when the size $q$ of the base field is fixed and the genus goes to the infinity.
In this paper it is proved that almost all subsets of $u \in [T,T+g-1]$ players have no information of the secret and almost all subsets of $u \in [T+g,T+2g-1]$ players can reconstruct the secret when the size $q$ goes to the infinity and the genus satisfies $\lim \frac{g}{\sqrt{q}}=0$. Then algebraic geometric secretsharing schemes over large finite fields are asymptotically threshold in this case. We also analyze the case when the size $q$ of the base field is fixed and the genus goes to the infinity.
Guoai Xu, Jiangtao Yuan, Guosheng Xu
Multipartite secret sharing schemes are those that have multipartite access structures. The set of the participants in those schemes is divided into several parts, and all the participants in the same part play the equivalent role. One type of such access structure is the compartmented access structure. We propose an ideal and efficient compartmented multi-secret sharing scheme based on the linear homogeneous recurrence (LHR) relations. In the construction phase, the shared secrets are hidden in some terms of the linear homogeneous recurrence sequence. In the recovery phase, the shared secrets are obtained by solving those terms in which the shared secrets are hidden. When the global threshold is $t$, our scheme can reduce the computational complexity from $O(n^{t-1})$ to $O(n^{\max(t_i-1)}\log n)$, where $t_i<t$. The security of the proposed scheme is based on Shamir's threshold scheme. Moreover, it is efficient to share the multi-secret and to change the shared secrets in the proposed scheme. That is, the proposed scheme can improve the performances of the key management and the distributed system.
Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gazi, Sarah Meiklejohn, Edgar Weippl
A long standing question in the context of cryptocurrencies based on Nakamoto consensus is whether such constructions are
incentive compatible, i.e., the intended properties of the system emerge from the appropriate utility model for participants. Bribing and other related attacks, such as front-running or Goldfinger attacks, aim to directly influence the incentives of actors within (or outside) of the targeted cryptocurrency system. The theoretical feasibility of bribing attacks on cryptocurrencies was first highlighted in 2016 by Bonneau, with various different techniques and approaches having since been proposed. Some
of these attacks are designed to gain in-band profits, while others intend to break the mechanism design and render the cryptocurrency worthless. In this paper, we systematically expose the large but scattered body of research in this area which has accumulated over the years. We summarize these bribing attacks and similar techniques that leverage on programmatic execution and verification under the term algorithmic incentive manipulation (AIM) attacks, and show that the problem space is not yet fully explored. Based on our analysis we present several research gaps and opportunities that warrant further investigation. In particular, we highlight no- and near-fork attacks as a powerful, yet largely underestimated, AIM category that raises serious security concerns not only for smart contract platforms.
-
Event date: to
Submission deadline: 31 July 2021
Submission deadline: 31 July 2021
University of Erlangen
We have an opening for an excellent, motivated, self-driven post-doctoral researcher to work in the area of password-based cryptography. The University of Erlangen Nürnberg is the most innovative university in Germany and ranks 14th worldwide according to Reuters "The World's Most Innovative Universities". We are an international group; working and teaching language is English. Roughly 20% of the people in Erlangen are foreigners, and learning German is not necessary. We offer an internationally competitive salary. The position is initially for one year with the possibility for extension to two additional years.
What we expect:
What we expect:
- A PhD degree in Cryptography
- Strong publication record
- Research statement
- Ideally two reference letters
- High motivation
Closing date for applications:
Contact: Dominique Schröder
Clemson University
The School of Mathematical and Statistical Sciences at Clemson University invites applications for a tenure-track faculty position starting with the Fall 2021 semester. The position will be targeted toward mathematics of communication, that is, mathematics with applications in areas such as cybersecurity, coding theory, computational number theory, blockchain technology, artificial intelligence and/or machine learning.
Closing date for applications:
Contact: Felice Manganiello
More information: https://www.mathjobs.org/jobs/list/17017
National Sun Yat-sen University, Department of Computer Science and Engineering, Kaohsiung, Taiwan
FACULTY POSITIONS AT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NATIONAL SUN YAT-SEN UNIVERSITY, TAIWAN
The Department of Computer Science and Engineering at National Sun Yat-sen University invites applications for tenure-track positions from August 2021. Applicants in areas of information security, network security, communication security, hardware security, and artificial intelligence are sought.
Applicants for assistant professorship must demonstrate strong research potential, in addition to good teaching ability. Applicants for associate professorship and professorship must have an exceptional record of research achievement. All successful candidates are expected to conduct both research and teaching activities. The department offers BS, MS and Ph. D. degrees in Computer Science and Engineering. The official language of teaching is Chinese, and English teaching is encouraged by the university. For more information, please visit our website:
https://cse.nsysu.edu.tw/index.php?Lang=en
Applications should include a curriculum vitae, recent publications, and reference letters from at least three people who can comment on the applicant's professional qualification. Other supporting material is welcome. Applications should be sent to:
Faculty Recruiting Committee
Department of Computer Science and Engineering
National Sun Yat-sen University
Kaohsiung, Taiwan 80424
Email:srkuang@cse.nsysu.edu.tw
TEL:+886-7-5252000 ext. 4340
FAX:+886-7-5254301
The deadline for applications is February 28, 2021.
Closing date for applications:
Contact: Prof. S.R. Kuang, Email: srkuang@cse.nsysu.edu.tw, TEL:+886-7-5252000 ext. 4340, FAX:+886-7-5254301
More information: https://cse.nsysu.edu.tw/index.php?Lang=en
New York University Abu Dhabi
The Division of Science at NYU Abu Dhabi (NYUAD) invites applications for tenured / tenure-track open-rank faculty positions within its Computer Science Program. Multidisciplinary research and exceptional teaching in a highly diverse and inclusive campus community are hallmarks of the University’s mission. Faculty within the Program of Computer Science at NYUAD are highly collaborative and pursue cutting edge research that is highly interdisciplinary. The internationally renowned research projects in fields that include, but are not limited to: artificial intelligence; bioinformatics; cybersecurity; computational geometry; computer social science; human data interaction; information and communication technologies for development; natural language processing; and theoretical computer science.
Closing date for applications:
Contact: Christina Poepper, christina.poepper@nyu.edu
More information: https://apply.interfolio.com/77776
NCC Group North America
Cryptography Services @ NCC Group | NYC, SF, Chicago and Waterloo, Ontario, Canada
NCC Group Crypto Services is hiring interns for summer 2021! We're a small-ish team auditing applied crypto and doing research in the field. If you like cryptography and security, and would like to pursue a research project in any of the applied crypto areas, such as (but not limited to):
- cryptographic implementations (cryptographic protocols or primitives block ciphers, elliptic cures, hash functions, lightweight crypto, post-quantum crypto)
- cryptocurrencies (audits of novel consensus algorithms, privacy preserving technologies in this space, etc.)
- audits of existing cryptographic software
The position will possibly be fully remote. The intern will get a feel of what crypto consulting looks like and do a research project with the help of a member of NCC Group CS team. Only candidates with legal permission to work in US or Canada would be considered due to short-term nature of the job.
NCC Group Crypto Services is hiring interns for summer 2021! We're a small-ish team auditing applied crypto and doing research in the field. If you like cryptography and security, and would like to pursue a research project in any of the applied crypto areas, such as (but not limited to):
- cryptographic implementations (cryptographic protocols or primitives block ciphers, elliptic cures, hash functions, lightweight crypto, post-quantum crypto)
- cryptocurrencies (audits of novel consensus algorithms, privacy preserving technologies in this space, etc.)
- audits of existing cryptographic software
The position will possibly be fully remote. The intern will get a feel of what crypto consulting looks like and do a research project with the help of a member of NCC Group CS team. Only candidates with legal permission to work in US or Canada would be considered due to short-term nature of the job.
Closing date for applications:
Contact: cs-intern-jobs@nccgroup.com
More information: https://www.nccgroup.com/us/our-services/cyber-security/specialist-practices/cryptography-services/
Duc-Phong Le, Binh P Nguyen
Ciet et al.(2006) proposed an elegant method for trading inversions for multiplications when computing [2] P+Q from two given points P and Q on elliptic curves of Weierstrass form. Motivated by their work, this paper proposes a fast algorithm for computing [4] P with only one inversion in affine coordinates. Our algorithm that requires 1I+ 8S+ 8M, is faster than two repeated doublings whenever the cost of one field inversion is more expensive than the cost of four field multiplications plus four field squarings (ie I> 4M+ 4S). It saves one field multiplication and one field squaring in comparison with the Sakai-Sakurai method (2001). Even better, for special curves that allow" a= 0"(or" b= 0") speedup, we obtain [4] P in affine coordinates using just 1I+ 5S+ 9M (or 1I+ 5S+ 6M, respectively).
29 December 2020
Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta
Payment Channel Networks (PCNs) have given a huge boost to the scalability of blockchain-based cryptocurrencies: Beyond improving the transaction rate, PCNs enabled cheap cross-currency payments and atomic swaps. However, current PCNs proposals either heavily rely on special scripting features of the underlying blockchain (e.g. Hash Time Lock Contracts) or are tailored to a handful of digital signature schemes, such as Schnorr or ECDSA signatures. This leaves us in an unsatisfactory situation where many currencies that are being actively developed and use different signature schemes cannot enjoy the benefits of a PCN.
In this work, we investigate whether we can construct PCNs assuming the minimal ability of a blockchain to verify a digital signature, for any signature scheme. In answering this question in the affirmative, we introduce the notion of lockable signatures, which constitutes the cornerstone of our PCN protocols. Our approach is generic and the PCN protocol is compatible with any digital signature scheme, thus inheriting all favorable properties of the underlying scheme that are not offered by Schnorr/ECDSA (e.g.\ aggregatable signatures or post-quantum security).
While the usage of generic cryptographic machinery makes our generic protocol impractical, we view it as an important feasibility result as it may serve as the basis for constructing optimized protocols for specific signature schemes. To substantiate this claim, we design a highly efficient PCN protocol for the special case of Boneh-Lynn-Shacham (BLS) signatures. BLS signatures enjoy many unique features that make it a viable candidate for a blockchain, e.g. short, unique, and aggregatable signatures. Yet, prior to our work, no PCN was known to be compatible with it (without requiring an advanced scripting language). The cost of our PCN is dominated by a handful of calls to the BLS algorithms. Our concrete evaluation of these basic operations shows that users with commodity hardware can process payments with minimal overhead.
In this work, we investigate whether we can construct PCNs assuming the minimal ability of a blockchain to verify a digital signature, for any signature scheme. In answering this question in the affirmative, we introduce the notion of lockable signatures, which constitutes the cornerstone of our PCN protocols. Our approach is generic and the PCN protocol is compatible with any digital signature scheme, thus inheriting all favorable properties of the underlying scheme that are not offered by Schnorr/ECDSA (e.g.\ aggregatable signatures or post-quantum security).
While the usage of generic cryptographic machinery makes our generic protocol impractical, we view it as an important feasibility result as it may serve as the basis for constructing optimized protocols for specific signature schemes. To substantiate this claim, we design a highly efficient PCN protocol for the special case of Boneh-Lynn-Shacham (BLS) signatures. BLS signatures enjoy many unique features that make it a viable candidate for a blockchain, e.g. short, unique, and aggregatable signatures. Yet, prior to our work, no PCN was known to be compatible with it (without requiring an advanced scripting language). The cost of our PCN is dominated by a handful of calls to the BLS algorithms. Our concrete evaluation of these basic operations shows that users with commodity hardware can process payments with minimal overhead.
Jiangtao Yuan, Jing Yang, Guoai Xu, Xingxing Jia, Chennyu Wang
Hierarchical secret sharing is an important key management technique since it is specially customized for hierarchical organizations with different departments allocated with different privileges, such as the government agencies or companies. Hierarchical access structures have been widely adopted in secret sharing schemes, where efficiency is the primary consideration for various applications. How to design an efficient hierarchical secret sharing scheme is an important issue. In 2007, a famous hierarchical secret sharing (HSS) scheme was proposed by Tassa based on Birkhoff interpolation, and later, based on the same method, many other HSS schemes were proposed. However, these schemes all depend on Polya's condition, which is a necessary condition not a sufficient condition. It cannot guarantee that Tassa's HSS scheme always exists. Furthermore, this condition needs to check the non-singularity of many matrices. We propose a hierarchical multi-secret sharing scheme based on the linear homogeneous recurrence (LHR) relations and the one-way function. In our scheme, we select $m$ linearly independent homogeneous recurrence relations. The participants in the highly-ranked subsets $\gamma_1, \gamma_2 ,\cdots, \gamma_{j-1}$ join in the $j$-th subset to construct the $j$-th LHR relation. In addition, the proposed hierarchical multi-secret sharing scheme just requires one share for each participant, and keeps the same computational complexity. Compared with the state-of-the-art hierarchical secret sharing schemes, our scheme has high efficiency.