International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

21 March 2021

TU Wien, Austria
Job Posting Job Posting

As part of the SecInt Doctoral College (SecInt-DK), TU Wien is offering four positions as university assistant (Pre-Doc) for 4 years. Expected start: 01.05.2021.

Tasks:

  • Collaboration on current research projects
  • Deepening scientific knowledge
  • Collaboration in academic teaching
  • Writing a dissertation and publications
  • Participation in regular events organized by the SecInt Doctoral College
  • Completion of an internship with one of our international research partners
  • Presentation of research results and participation in scientific event

The Research Projects: The SecInt Doctoral college offers 4 interdisciplinary research projects from the areas of Formal Methods, Security and Privacy, and Machine Learning, that are each supervised by at least two professors from the corresponding research areas. Additional details on the individual projects can be found at https://secint.visp.wien/projects and https://jobs.tuwien.ac.at/Job/147334.

We offer:

  • Diverse and exciting tasks, with lots of interdisciplinary collaboration
  • Continuing personal and professional education and flexible working hours
  • Central location with very good accessibility in a city regularly ranked first worldwide for life quality
  • Possibility of an internship with one of our international research partners
  • Very competitive salary

Your profile:

  • Completion of a master or diploma curriculum in computer science, electrical engineering or another related field
  • Experience in Mathematical Modeling, Computational Logic, Formal Methods, Security and Privacy, Robotics and/or Machine Learning
  • Very good skills in English communication and writing.
  • Readiness for interdisciplinary collaboration
  • Team competences, problem-solving skills and innovative ability

A predoctoral researcher at TU Wien currently receives a minimum of EUR 2228/month gross, 14 times/year for 30 hours/week and EUR 2971/month for 40 hours/week.

We look forward to receiving your application until 11.04.2021

Closing date for applications:

Contact: https://jobs.tuwien.ac.at/Job/147334

More information: https://secint.visp.wien/application/

Expand

18 March 2021

Wei Cheng, Sylvain Guilley, Claude Carlet, Jean-Luc Danger, Sihem Mesnager
ePrint Report ePrint Report
In this paper, we present a unified approach to quantifying the information leakages in the most general code-based masking schemes. Specifically, by utilizing a uniform representation, we highlight first that the side-channel resistance of all code-based masking schemes can be quantified by an all-in-one framework consisting of two easy-to-compute parameters (the dual distance and the number of conditioned codewords) from a coding-theoretic perspective. In particular, we use signal-to-noise ratio (SNR) and mutual information (MI) as two complementary metrics, where a closed-form expression of SNR and an approximation of MI are proposed by connecting both metrics to the two coding-theoretic parameters.

Second, taking the connection between Reed-Solomon code and SSS (Shamir's Secret Sharing) scheme, the SSS-based masking is viewed as a special case of generalized code-based masking. Hence as a straightforward application, we evaluate the impact of public points on the side-channel security of SSS-based masking schemes, namely the polynomial masking, and enhance the SSS-based masking by choosing optimal public points for it. Interestingly, we show that given a specific security order, more shares in SSS-based masking leak more information on secrets in an information-theoretic sense. Finally, our approach provides a systematic method for optimizing the side-channel resistance of every code-based masking. More precisely, this approach enables us to select optimal linear codes (parameters) for the generalized code-based masking by choosing appropriate codes according to the two coding-theoretic parameters. Summing up, we provide a best-practice guideline for the application of code-based masking to protect cryptographic implementations.
Expand
Zezhou Hou, Jiongjiong Ren, Shaozhen Chen
ePrint Report ePrint Report
Deep learning has played an important role in many fields. It shows significant potential to cryptanalysis. Differential cryptanalysis is an important method in the field of block cipher cryptanalysis. The key point of differential cryptanalysis is to find a differential distinguisher with longer rounds or higher probability. Firstly, we describe how to construct the ciphertext pairs required for differential cryptanalysis based on deep learning. Based on this, we train 9-round and 8-round differential distinguisher of SIMON32 based on deep residual neural networks. Secondly, we explore the impact of the input difference patterns on the accuracy of the distinguisher based on deep learning. For the input difference with Hamming weight of 1, the accuracy of 9-round distinguisher is different between the first 16 bits and the last 16 bits for non-zero bit positions. This is mainly caused by that its nonlinear operation is mainly concentrated in the first 16 bits. We also find that the accuracy of the distinguisher is different even if the input differences come from the differential characteristics with the same probability. Finally, we construct a last subkey recovery attack on 11-Round SIMON32 with practical data and time complexities. Our attack only uses about 29 chosen plaintexts and only needs about 45s for an attack with a success rate of over 90% using our workstation, which does not exceed 2^18:5 11-round encryption. At the same time, we extend the neural 9-round distinguisher to a 11-round distinguisher based on SAT, and propose a last subkey recovery attack on 13-Round SIMON32 using 2^12:5 chosen plaintexts with a success rate of over 90%. Compared with traditional approach, the complexity of the method based on deep learning is lower, both in time complexity and data complexity.
Expand
Jiaxin Wang Fang-Wei Fu
ePrint Report ePrint Report
Plateaued functions as an extension of bent functions play a significant role in cryptography, coding theory, sequences and combinatorics. In 2019, Hod\v{z}i\'{c} et al. [IEEE TIT 65(9): 5865-5879, 2019] designed Boolean plateaued functions in spectral domain and provided some efficient construction methods in spectral domain. However, in their constructions, the Walsh support of Boolean $s$-plateaued functions in $n$ variables, when written as a matrix of order $2^{n-s} \times n$, contains at least $n-s$ columns corresponding to affine functions on $\mathbb{F}_{2}^{n-s}$. In this paper, we study generalized $s$-plateaued functions from $V_{n}$ to $\mathbb{Z}_{p^k}$ where $p$ is an odd prime and $k\geq 1$ or $p=2, k\geq 2$ and $n+s$ is even. Firstly, inspired by the work of Hod\v{z}i\'{c} \emph{et al}., we give a complete characterization of generalized plateaued functions with affine Walsh support and provide some construction methods of generalized plateaued functions with (non)-affine Walsh support in spectral domain. In our constructions of generalized $s$-plateaued functions with non-affine Walsh support, the Walsh support can contain strictly less than $n-s$ columns corresponding to affine functions and our construction methods are also applicable to Boolean plateaued functions. Secondly, we provide a generalized indirect sum construction method of generalized plateaued functions, which can also be used to construct (non)-weakly regular generalized bent functions. In particular, we show that the canonical way to construct Generalized Maiorana-McFarland bent functions is a special case of the generalized indirect sum construction method and we illustrate that the generalized indirect sum construction method can be used to construct bent functions not in the complete Generalized Maiorana-McFarland class. Furthermore, based on this construction method, we give constructions of plateaued functions in the subclass WRP of the class of weakly regular plateaued functions and vectorial plateaued functions.
Expand
Thuat Do
ePrint Report ePrint Report
Blockchain has been practiced in crypto-currencies and crossborder banking settlement. However, no clear evidence that a distributed ledger network (or Blockchain) is built within domestic payment systems, although many experts believe that Blockchain has wide applicability in various industries and disciplines. As the author’s best knowledge, no one has published a clear architecture and a feasible framework for a Blockchain-based banking network. Thus, \how Blockchain can be implemented in domestic banking systems" is a big challenge. The most important contribution of this work is to give a feasible and viable framework resolving that problem. The author investigates a Blockchain-based payment framework, more explicitly, a decentralized banking architecture running on the top of existing banking cores. The Blockchain network has two tiers: master nodes (block generators) and normal nodes (validators). The consensus mechanism is introduced as a composition of Proof of Stake, Proof of Reputation and/or practical Byzantine Fault Tolerance. In addition, nomination and approval mechanisms are added to the governance to enhance legal compliance and compatibility with real Fintech space. Some qualitative analysis is provided to show that the proposed Blockchain banking framework offers better security, scalability and decentralization, while easily adapt with different national regulation environments, among other Blockchains. In the application aspects, the framework is implementable and deployable for decentralized payment network and smartcontract infrastructure for domestic markets, then enable a complete and unified digitized space for cloud banking and financial services.
Expand
Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso
ePrint Report ePrint Report
In this note, we conduct a cryptanalysis of the paper published by Zhu et al. on Future Generation Computer Systems in 2021. We demonstrate that their quantum-resistant identity-based proxy signcryption scheme cannot achieve the confidentiality as they claimed.
Expand
Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, Pratik Soni
ePrint Report ePrint Report
We construct public-coin time- and space-efficient zero-knowledge arguments for $\mathbf{NP}$. For every time $T$ and space $S$ non-deterministic RAM computation, the prover runs in time $T \cdot \mathrm{polylog}(T)$ and space $S \cdot \mathrm{polylog}(T)$, and the verifier runs in time $n \cdot \mathrm{polylog}(T)$, where $n$ is the input length. Our protocol relies on hidden order groups, which can be instantiated, assuming a trusted setup, from the hardness of factoring (products of safe primes), or, without a trusted setup, using class groups. The argument-system can heuristically be made non-interactive using the Fiat-Shamir transform.

Our proof builds on DARK (Bünz et al., Eurocrypt 2020), a recent succinct and efficiently verifiable polynomial commitment scheme. We show how to implement a variant of DARK in a time- and space-efficient way. Along the way we:

1. Identify a significant gap in the proof of security of DARK. 2. Give a non-trivial modification of the DARK scheme that overcomes the aforementioned gap. The modified version also relies on significantly weaker cryptographic assumptions than those in the original DARK scheme. Our proof utilizes ideas from the theory of integer lattices in a novel way. 3. Generalize Pietrzak's (ITCS 2019) proof of exponentiation ($\mathsf{PoE}$) protocol to work with general groups of unknown order (without relying on any cryptographic assumption).

In proving these results, we develop general-purpose techniques for working with (hidden order) groups, which may be of independent interest.
Expand
Guilherme Perin, Lichao Wu, Stjepan Picek
ePrint Report ePrint Report
The deep learning-based side-channel analysis represents an active research domain. While it is clear that deep learning enables powerful side-channel attacks, the variety of research scenarios often makes the results difficult to reproduce.

In this paper, we present AISY - a deep learning-based framework for profiling side-channel analysis. Our framework enables the users to run the analyses and report the results efficiently while maintaining the results' reproducible nature. The framework implements numerous features allowing state-of-the-art deep learning-based analysis. At the same time, the AISY framework allows easy add-ons of user-custom functionalities.
Expand
Anton Tutoveanu
ePrint Report ePrint Report
Constant advancements in quantum computing bring closer the reality of current public key encryption schemes becoming computationally feasible to be broken. Many developers working in the industry are just finding out about this and will be rapid to look into changing their web applications to be secure in the quantum era. This paper presents a tried and tested construction for a quantum-resistant, end-to-end encryption scheme which has been implemented in an online web application. The implementation is shown to work well without significant impact on the performance time in comparison to its pre-quantum counterpart.
Expand
Georg Land, Pascal Sasdrich, Tim Güneysu
ePrint Report ePrint Report
CRYSTALS-Dilithium as a lattice-based digital signature scheme has been selected as a finalist in the PQC standardization process of NIST. As part of this selection, a variety of software implementations have been evaluated regarding their performance and memory requirements for platforms like x86 or ARM Cortex-M4. In this work, we present a first set of FPGA implementations for the low-end Xilinx Artix-7 platform, evaluating the peculiarities of the scheme in hardware, reflecting all available round-3 parameter sets. As a key component in our analysis, we present results for a specifically adapted NTT core for the Dilithium cryptosystem, optimizing this component for an optimal LUT and FF utilization by efficient use of special purpose DSPs. Presenting our results, we aim to shed further light on the performance of lattice-based cryptography in low-cost and high-throughput configurations and their respective potential use-cases in practice.
Expand
Peeter Laud
ePrint Report ePrint Report
The MPC-in-the-head construction (Ishai et al., STOC'07) give zero-knowledge proofs from secure multiparty computation (MPC) protocols. This paper presents an efficient MPC protocol for permuting a vector of values, making use of the relaxed communication model that can be handled by the MPC-in-the-head construction. Our construction allows more efficient ZK proofs for relations expressed in the Random Access Machine (RAM) model. As a standalone application of our construction, we present batch anonymizable ring signatures.
Expand
Alonso González, Alexandros Zacharakis
ePrint Report ePrint Report
In this work we construct for the first time a delegation scheme for arithmetic circuits with proof-size and verification complexity comparable to those of pairing based zk-SNARKS (e.g. Gennaro et al. at Eurocrypt 2013 or Groth at Eurocrypt 2016), but based on standard assumptions. Each proof comprises $O(1)$ group elements of a bilinear group and verification requires $O(1)$ pairings plus $n$ exponentiations, where $n$ is the number of inputs. Soundness can be proven under any Matrix Diffie-Hellman (MDDH) assumption of size $k\geq 2$. The size of the reference string as well as the prover's complexity is quadratic in the size of the circuit.

Our techniques combine the ideas for constructing delegation schemes of Paneth and Rothblum (TCC 2017), and then refined by Kalai et al. (STOC 2019), with the so called Quasi-Adaptive NIZK arguments for linear languages (Jutla and Roy at Asiacrypt 2014 and Crypto 2015, Libert et al. Eurocrypt 2015, Kiltz and Wee Eurocrypt 2015) and for quadratic languages (González et al. at Asiacrypt 2015 and 2019). We obtain a delegation scheme with asymptotically shorter proofs and verification.

Our construction can be turned into a NIZK argument for NP of size $n+O(1)$ group elements under the same assumptions and can be used to construct zk-SNARKs from quantitatively weaker assumptions than the state of the art. Additionally, the NIZK argument for NP yields a compact NIZK for NP with proof size linear in the size of the witness by using the same techniques and improving on Katsumata et al. (Crypto 2019 and Eurocrypt 2020) which has proof size linear in the size of the circuit.
Expand
Jan Philipp Thoma, Tim Güneysu
ePrint Report ePrint Report
Quantum computers are about to herald a new age of cryptography. As a fundamental building block in today’s digitalized world, Digital Signature Schemes (DSS) provide the ability to authenticate messages exchanged over untrusted channels. Unfortunately, virtually all currently used DSS are built upon mathematical problems that can efficiently be solved using quantum computers, thus rendering schemes such as RSA and ECC insecure. Due to its conservative security properties, the eXtended Merkle Signature Scheme (XMSS) is an outstanding candidate for a quantum-secure DSS which has already been standardized by NIST and IETF.

In this paper we present the first full hardware accelerator for XMSS whose generic design approach allows matching the requirements of several projected use-cases. In particular, we provide a full design exploration regarding the choice of parameters and hash functions to identify configurations for optimal performance and area utilization.
Expand
Hyoseung Kim, Olivier Sanders, Michel Abdalla, Jong Hwan Park
ePrint Report ePrint Report
Dynamic group signature (DGS) allows a user to generate a signature on behalf of a group, while preserving anonymity. Although many existing DGS schemes have been proposed in the random oracle model for achieving efficiency, their security proofs require knowledge extractors that cause loose security reductions. In this paper, we first propose a new practical DGS scheme whose security can be proven without knowledge extractors in the random oracle model. Moreover, our scheme can also be proven in the strong security model where an adversary is allowed to generate group managers’ keys maliciously. The efficiency of our scheme is comparable to existing secure DGS schemes in the random oracle model using knowledge extractors. The security of our scheme is based on a new complexity assumption that is obtained by generalizing the Pointcheval-Sanders (PS) assumption. Although our generalized PS (GPS) assumption is interactive, we prove that, under the symmetric discrete logarithm (SDL) assumption, the new GPS assumption holds in the algebraic group model.
Expand
Konstantinos Chalkias, Francois Garillot, Yashvanth Kondi, Valeria Nikolaenko
ePrint Report ePrint Report
Schnorr's signature scheme provides an elegant method to derive signatures with security rooted in the hardness of the discrete logarithm problem, which is a well-studied assumption and conducive to efficient cryptography. However, unlike pairing-based schemes which allow arbitrarily many signatures to be aggregated to a single constant sized signature, achieving significant non-interactive compression for Schnorr signatures and their variants has remained elusive. This work shows how to compress a set of independent EdDSA/Schnorr signatures to roughly half their naive size. Our technique does not employ generic succinct proofs; it is agnostic to both the hash function as well as the specific representation of the group used to instantiate the signature scheme. We demonstrate via an implementation that our aggregation scheme is indeed practical. Additionally, we give strong evidence that achieving better compression would imply proving statements specific to the hash function in Schnorr's scheme, which would entail significant effort for standardized schemes such as SHA2 in EdDSA. Among the others, our solution has direct applications to compressing Ed25519-based blockchain blocks because transactions are independent and normally users do not interact with each other.
Expand

17 March 2021

Nir Bitansky, Michael Kellner, Omri Shmueli
ePrint Report ePrint Report
We study post-quantum zero-knowledge (classical) protocols that are sound against quantum resetting attacks. Our model is inspired by the classical model of resetting provers (Barak-Goldreich-Goldwasser-Lindell, FOCS `01), providing a malicious efficient prover with oracle access to the verifier's next-message-function, fixed to some initial random tape; thereby allowing it to effectively reset (or equivalently, rewind) the verifier. In our model, the prover has quantum access to the verifier's function, and in particular can query it in superposition. The motivation behind quantum resettable soundness is twofold: First, ensuring a strong security guarantee in scenarios where quantum resetting may be possible (e.g., smart cards, or virtual machines). Second, drawing intuition from the classical setting, we hope to improve our understanding of basic questions regarding post-quantum zero knowledge. We prove the following results: Black-Box Barriers: Quantum resetting exactly captures the power of black-box zero knowledge quantum simulators. Accordingly, resettable soundness cannot be achieved in conjunction with black-box zero knowledge, except for languages in $\BQP$. Leveraging this, we prove that constant-round public-coin, or three message, protocols cannot be black-box post-quantum zero-knowledge. For this, we show how to transform such protocols into quantumly resettably sound ones. The transformations are similar to classical ones, but their analysis is significantly more challenging due to the essential difference between classical and quantum resetting.

A Resettably-Sound Non-Black-Box Zero-Knowledge Protocol: Under the (quantum) Learning with Errors assumption and quantum fully-homomorphic encryption, we construct a post-quantum resettably-sound zero knowledge protocol for $\NP$. We rely on non-black-box simulation techniques, thus overcoming the black-box barrier for such protocols.

From Resettable Soundness to The Impossibility of Quantum Obfuscation: Assuming one-way functions, we prove that any quantumly-resettably-sound zero-knowledge protocol for $\NP$ implies the impossibility of quantum obfuscation. Combined with the above result, this gives an alternative proof to several recent results on quantum unobfuscatability.
Expand
Maxime Bombar, Alain Couvreur
ePrint Report ePrint Report
This article discusses the decoding of Gabidulin codes and shows how to extend the usual decoder to any supercode of a Gabidulin code at the cost of a significant decrease of the decoding radius. Using this decoder, we provide polynomial time attacks on the rank–metric encryption schemes Ramesses and Liga.
Expand
Marios Adamoudis, Konstantinos A. Draziotis, Dimitrios Poulakis
ePrint Report ePrint Report
In this paper, we improve the theoretical background of the attacks on the DSA schemes given in [1, 29], and we present some new more practical attacks.
Expand
Benny Applebaum, Eliran Kachlon, Arpita Patra
ePrint Report ePrint Report
We study the round complexity of secure multiparty computation (MPC) in the challenging model where full security, including guaranteed output delivery, should be achieved at the presence of an active rushing adversary who corrupts up to half of parties. It is known that 2 rounds are insufficient in this model (Gennaro et al., Crypto 2002), and that 3 round protocols can achieve computational security under public-key assumptions (Gordon et al., Crypto 2015; Ananth et al., Crypto 2018; and Badrinarayanan et al., ASIACRYPT 2020). However, despite much effort, it is unknown whether public-key assumptions are inherently needed for such protocols, and whether one can achieve similar results with security against computationally-unbounded adversaries.

In this paper, we use Minicrypt-type assumptions to realize 3-round MPC with full and active security at the presence of honest-majority. Our protocols come in two flavors: standard computational security and online-computational security with statistical everlasting security, i.e., the protocol is secure against adversaries that are computationally unlimited after the protocol execution. Specifically, we prove the following results:

- (Statistical everlasting security) Every NC1 functionality can be computed in 3 rounds given a hash function that is modeled as a random oracle. The random oracle can be replaced with a common reference string (CRS) and a family of hash functions for which it is hard to find inputs that are correlated under some explicit sparse algebraically-simple relation R. We can further relax the assumption on the hash function to standard collision-resistance if the adversary is only semi-rushing, i.e., in each round at least one, a-priory unknown, honest party speaks after the adversary.

- (Computational security) Every efficiently-computable function can be realized in 3 rounds assuming non-interactive commitments (NICOM) and R-intractable hash function. The former assumption follows from the existence of injective one-way functions, and the latter can be completely removed if the adversary is semi-rushing.
Expand
Dmitry Kogan, Henry Corrigan-Gibbs
ePrint Report ePrint Report
This paper presents Checklist, a system for private blocklist lookups. In Checklist, a client can determine whether a particular string appears on a server-held list of blocklisted strings, without leaking its string to the server. Checklist is the first blocklist-lookup system that (1) leaks no information about the client’s string to the server and (2) allows the server to respond to the client’s query in time sublinear in the blocklist size. To make this possible, we construct a new two-server private-information-retrieval protocol that is both asymptotically and concretely faster, in terms of server-side time, than those of prior work. We evaluate Checklist in the context of Google’s “Safe Browsing” blocklist, which all major browsers use to prevent web clients from visiting malware-hosting URLs. Today, lookups to this blocklist leak partial hashes of a subset of clients’ visited URLs to Google’s servers. We have modified Firefox to perform Safe-Browsing blocklist lookups via Checklist servers, which eliminate the leakage of partial URL hashes from the Firefox client to the blocklist servers. This privacy gain comes at the cost of increasing communication by a factor of 3.3×, and the server-side compute costs by 9.8×. Use of our new PIR protocol reduces server-side costs by 6.7×, compared to what would be possible prior state-of-the-art two-server PIR.
Expand
◄ Previous Next ►