International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

06 August 2021

Quoc Huy Do, Pedram Hosseyni, Ralf Kuesters, Guido Schmitz, Nils Wenzler, Tim Wuertele
ePrint Report ePrint Report
Payment is an essential part of e-commerce. Merchants usually rely on third-parties, so-called payment processors, who take care of transferring the payment from the customer to the merchant. How a payment processor interacts with the customer and the merchant varies a lot. Each payment processor typically invents its own protocol that has to be integrated into the merchant’s application and provides the user with a new, potentially unknown and confusing user experience.

Pushed by major companies, including Apple, Google, Mastercard, and Visa, the W3C is currently developing a new set of standards to unify the online checkout process and “streamline the user’s payment experience”. The main idea is to integrate payment as a native functionality into web browsers, referred to as the Web Payment APIs. While this new checkout process will indeed be simple and convenient from an end-user perspective, the technical realization requires rather significant changes to browsers.

Many major browsers, such as Chrome, Firefox, Edge, Safari, and Opera, already implement these new standards, and many payment processors, such as Google Pay, Apple Pay, or Stripe, support the use of Web Payment APIs for payments. The ecosystem is constantly growing, meaning that the Web Payment APIs will likely be used by millions of people worldwide.

So far, there has been no in-depth security analysis of these new standards. In this paper, we present the first such analysis of the Web Payment APIs standards, a rigorous formal analysis. It is based on the Web Infrastructure Model (WIM), the most comprehensive model of the web infrastructure to date, which, among others, we extend to integrate the new payment functionality into the generic browser model.

Our analysis reveals two new critical vulnerabilities that allow a malicious merchant to over-charge an unsuspecting customer. We have verified our attacks using the Chrome implementation and reported these problems to the W3C as well as the Chrome developers, who have acknowledged these problems. Moreover, we propose fixes to the standard, which by now have been adopted by the W3C and Chrome, and prove that the fixed Web Payment APIs indeed satisfy strong security properties.
Expand
Mojtaba Rafiee
ePrint Report ePrint Report
A Multi-Client Functional Encryption (MCFE) scheme for set intersection is a cryptographic primitive that enables an evaluator to learn the intersection from all sets of a pre-determined number of clients, without need to learn the plaintext set of each individual client. In this paper, we propose a flexible version of the MCFE schemes for the set intersection, called Flexible Multi-Client Functional Encryption for Set Intersection (FMCFE). In our FMCFE scheme, the evaluator can learn the intersection from any flexible choice of sets (instead of all sets). In this regard, we redefine syntax and security notions of the MCFE schemes for the FMCFE schemes. In the literature, solving multi-client set intersection problem in polynomial time, such that only the intersection result is revealed (without additional information), is an open problem. In this paper, we propose a relaxed solution using FMCFE schemes to solve secure set intersection in polynomial time. We analyze that for practical use of secure multi-client set intersection, this relaxation is necessary. We also show that our scheme has the adaptive indistinguishability-based security under passive corruption. Our proof relies on the Symmetric eXternal Diffie-Hellman (SXDH) assumption in the standard model.
Expand
Endre (Silur) Abraham
ePrint Report ePrint Report
Mainstream hash functions such as SHA or BLAKE while generally efficient in their implementations, are not suitable for zero-knowledge boolean or arithmetic circuits due to their reliance on CPU designs. As a candidate hash function that uses only on trivial arithmetics which can be generalized to zeroknowledge circuits, the Ajtai lattice SIS-hasher has been proposed. In this paper we review Micciancio’s R-SIS generalization and argue about it’s circuit complexity, then we show how this R-SIS hasher can be used as a universal dynamic hash accumulator that has constant-time update and revocation complexity, and can be run on 16-bit hardware as well as smart contracts.
Expand
Aydin Abadi, Steven J. Murdoch, Thomas Zacharias
ePrint Report ePrint Report
Private Set Intersection protocols (PSIs) allow parties to compute the intersection of their private sets, such that nothing about the sets’ elements beyond the intersection is revealed. PSIs have a variety of applications, primarily in efficiently supporting data sharing in a privacy-preserving manner. At Eurocrypt 2019, Ghosh and Nilges pro- posed three efficient PSIs based on the polynomial representation of sets and proved their security against active adversaries. In this work, we show that these three PSIs are susceptible to several serious attacks. The attacks let an adversary (1) learn the correct intersection while making its victim believe that the intersection is empty, (2) learn a certain element of its victim’s set beyond the intersection, and (3) delete multiple elements of its victim’s input set. We explain why the proofs did not identify these attacks and propose a set of mitigations
Expand
Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, Yu-Chi Chen
ePrint Report ePrint Report
With the rapid development of cloud computing, an increasing number of companies are adopting cloud storage to reduce overhead. However, to ensure the privacy of sensitive data, the uploaded data need to be encrypted before being outsourced to the cloud. The concept of public-key encryption with keyword search (PEKS) was introduced by Boneh \textit{et al.} to provide flexible usage of the encrypted data. Unfortunately, most of the PEKS schemes are not secure against inside keyword guessing attacks (IKGA), so the keyword information of the trapdoor may be leaked to the adversary. To solve this issue, Huang and Li presented public key authenticated encryption with keyword search (PAEKS) in which the trapdoor generated by the receiver is only valid for authenticated ciphertexts. With their seminal work, many PAEKS schemes have been introduced for the enhanced security of PAEKS. Some of them further consider the upcoming quantum attacks. However, our cryptanalysis indicated that in fact, these schemes could not withstand IKGA. To fight against the attacks from quantum adversaries and support the privacy-preserving search functionality, we first introduce a novel generic PAEKS construction in this work. We further present the first quantum-resistant PAEKS instantiation based on lattices. The security proofs showed that our instantiation not only satisfied the basic requirements but also achieved an enhanced security model, namely the multi-ciphertext and multi-trapdoor indistinguishability. Furthermore, the comparative results indicated that with only some additional expenditure, this instantiation could provide more secure properties, making it suitable for more diverse application environments.
Expand

05 August 2021

St. George's, Grenada, 14 February - 18 February 2022
Event Calendar Event Calendar
Event date: 14 February to 18 February 2022
Submission deadline: 9 September 2021
Notification: 18 November 2021
Expand
Join Research Centre - European Commission - Ispra, Italy
Job Posting Job Posting
A Contractual Agent position FG IV in Ispra, Italy. The successful candidate will contribute to the activities of the Cyber and Digital Citizen Security Unit aiming at strengthening the citizen’ security and privacy by exploring innovative forensic technologies to support the fight against organised crimes. The successful candidate shall have a PhD degree - or a minimum of 5 years of full-time research or working experience after the first University degree giving access to doctoral (PhD) studies in the field of applied mathematics, cryptography, computer science, or machine learning and deep learning techniques, or similar. Solid knowledge and experience are required in:  Mathematics and more particularly cryptography or multi-linear algebra;  Machine learning and deep learning;  Ability to work in a multilingual and multicultural environment;  English language, at least C1 level both oral and written. The following knowledge or experience are an asset:  Experience with digital forensic techniques  Experience with High-Performance Computing platform

Closing date for applications:

Contact: Laurent Beslay jrc-e3-secretariat@ec.europa.eu

More information: https://recruitment.jrc.ec.europa.eu/

Expand
KU Leuven
Job Posting Job Posting
In the Science, Engineering and Technology Group of KU Leuven, Faculty of Engineering Science, Department of Computer Science, there is a full-time academic vacancy for a professor in the area of secure and dependable software systems and services. This area is interpreted broadly, and includes for example the resilience, reliability and security of digital services, of software products and of Internet-based systems.
We are looking for an internationally orientated candidate with both educational competence and excellent research experience in computer science, and with extensive expertise in the field of secure and robust software systems and services. The new faculty member will become a member of the DistriNet unit, an internationally leading research group with recognized expertise in the areas of security, distributed systems and software engineering.
Candidates will be expected to develop an ambitious research programme that integrates well with the current research activities of the research group. Candidates should also be prepared to provide scientific services both within and outside the university, and to contribute to education at bachelor and master level.
DistrNet is the "sister" organization of COSIC, it deals with general security research whereas COSIC deals with cryptographic research. The two organizations are part of the CyberSecurity Flanders initiative, which supports their work.

Closing date for applications:

Contact: For more information please contact Prof. dr. ir. Wouter Joosen, tel.: +32 16 32 76 53, mail: wouter.joosen@kuleuven.be or Prof. dr. ir. Stefan Vandewalle, tel.: +32 16 32 76 54, mail: stefan.vandewalle@kuleuven.be.

More information: https://www.kuleuven.be/personeel/jobsite/jobs/60022535

Expand
Telecom Paris, Institut Polytechnique de Paris
Job Posting Job Posting
Telecom Paris is hiring an Assistant/Associate Professor in Computer Science, with a preference for Cryptography and Cybersecurity. Application deadline: September, 24th 2021 Link: https://institutminestelecom.recruitee.com/l/en/o/maitre-de-conferences-en-informatique-fh-a-telecom-paris-cdi

Closing date for applications:

Contact: Phan Duong Hieu (hieu.phan@telecom-paris.fr)

More information: https://institutminestelecom.recruitee.com/l/en/o/maitre-de-conferences-en-informatique-fh-a-telecom-paris-cdi

Expand

04 August 2021

Real World Crypto Real World Crypto
RWC invites talk proposals to be considered for presentation at the symposium. The submission deadline is Sept. 1st.

Submission information can be found at: https://rwc.iacr.org/2022/contributed.php
Expand

03 August 2021

Jean-Sebastien Coron, Agnese Gini
ePrint Report ePrint Report
At Crypto '99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum problem, a variant of the classical subset sum problem where the $n$ weights are also hidden. As an application, they showed how to break the Boyko et al. fast generator of random pairs $(x,g^x \pmod{p})$. The Nguyen-Stern algorithm works quite well in practice for moderate values of $n$, but its complexity is exponential in $n$. A polynomial-time variant was recently described at Crypto 2020, based on a multivariate technique, but the approach is heuristic only. In this paper, we describe a proven polynomial-time algorithm for solving the hidden subset-sum problem, based on statistical learning. In addition, we show that the statistical approach is also quite efficient in practice: using the FastICA algorithm, we can reach $n=250$ in reasonable time.
Expand
Gilles Macario-Rat, Jacques Patarin
ePrint Report ePrint Report
In this paper, we present a new perturbation for the design of multivariate schemes that we call ``Pepper''. From this idea, we present some efficient multivariate signature schemes with explicit parameters that resist all known attacks. In particular they resist the two main (and often very powerful) attacks in this area: the Gröbner attacks (to compute a solution of the system derived from the public key) and the MinRank attacks (to recover the secret key). Pepper can also be seen as a new perturbation that can be used to strengthen many other multivariate schemes. The ``Pepper'' perturbation works only for public key equations of degree (at least) 3. Despite this, the size of the public key may still be reasonable since we can use larger fields (and also maybe non dense equations). Furthermore, the size of the signatures can be very short.
Expand
Arush Chhatrapati
ePrint Report ePrint Report
In this compilational work, we combine various techniques from classical cryptography and steganography to construct ciphers that conceal multiple plaintexts in a single ciphertext. We name these "multi-ciphers". Most notably, we construct and cryptanalyze a Four-In-One-Cipher: the fi rst cipher which conceals four separate plaintexts in a single ciphertext. Following a brief overview of classical cryptography and steganography, we consider strategies that can be used to creatively combine these two fields to construct multi-ciphers. Finally, we cryptanalyze three multi-ciphers which were constructed using the techniques described in this paper. This cryptanalysis relies on both traditional algorithms that are used to decode classical ciphers and new algorithms which we use to extract the additional plaintexts concealed by the multi-ciphers. We implement these algorithms in Python, and provide code snippets. The primary goal of this work is to inform others who might be otherwise unfamiliar with the fields of classical cryptography and steganography from a new perspective which lies at the intersection of these two fields. The ideas presented in this paper could prove useful in teaching cryptography, statistics, mathematics, and computer science to future generations in a unique, interdisciplinary fashion. This work might also serve as a source of creative inspiration for other cipher-making, code-breaking enthusiasts.
Expand
Nils Wisiol
ePrint Report ePrint Report
We present the LP-PUF, a novel, Arbiter PUF-based, CMOS-compatible strong PUF design. We explain the motivation behind the design choices for LP-PUF and show evaluation results to demonstrate that LP-PUF has good uniqueness, low bias, and fair bit sensitivity and reliability values. Furthermore, based on analyses and discussion of the LR and splitting attacks, the reliability attacks, and MLP attack, we argue that the LP-PUF has potential to be secure against known PUF modeling attacks, which motivates a discussion of limitations of our study and future work with respect to the LP-PUF.
Expand
Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, Peter Schwabe
ePrint Report ePrint Report
This paper describes an ECC implementation computing the X25519 key-exchange protocol on the ARM-Cortex M4 microcontroller. This software comes with extensive mitigations against various side-channel and fault attacks and is, to our best knowledge, the first to claim affordable protection against multiple classes of attacks that are motivated by distinct real-world application scenarios. We also present the results of a comprehensive side-channel evaluation. We distinguish between X25519 with ephemeral keys and X25519 with static keys and show that the overhead to protect the two is about 36% and 239% respectively. While this might seem to be a high price to pay for security, we also show that even our (most protected) static implementation is more efficient than widely deployed ECC cryptographic libraries, which offer much fewer protections.
Expand

02 August 2021

San Francisco, USA, 7 February - 10 February 2022
Event Calendar Event Calendar
Event date: 7 February to 10 February 2022
Submission deadline: 13 September 2021
Notification: 11 November 2021
Expand

30 July 2021

San Antonio, USA, 2 November - 3 November 2021
Event Calendar Event Calendar
Event date: 2 November to 3 November 2021
Submission deadline: 7 August 2021
Notification: 1 October 2021
Expand
University of St. Gallen, Switzerland
Job Posting Job Posting
We are looking for a bright and motivated PhD student to work in the topics of information security and cryptography. The student is expected to work on topics that include security and privacy issues for resource-constrained devices (e.g., sensors) that rely on external untrusted servers in order to perform computations. More precisely, the student shall be working on investigating efficient authentication and verifiable delegation of computation mechanisms that provide: i) provable security guarantees, and ii) rigorous privacy guarantees. The overall aim of the PhD position will be to design and evaluate provably secure cryptographic protocols for privacy-preserving authentication and verifiable delegation of computation protocols. The research shall also consider the case where multiple clients outsource jointly computations to untrusted cloud servers.

Key Responsibilities:
  • Perform exciting and challenging research in the domain of information security and cryptography.
  • Support and assist in teaching computer security and cryptography courses.
Your Profile:
Expand
University of St. Gallen, Switzerland
Job Posting Job Posting
We are looking for an excellent and motivated cryptography research engineer to a group of researchers focusing in applied and theoretical cryptography, network and information security and privacy-preservation led by Prof. Katerina Mitrokotsa. We are affiliated to the School of Computer Science (SCS) at the University of St.Gallen. The work is ideal for young professionals who want to boost their CV for applying for PhD positions or industrial jobs.

Responsibilities As a research engineer in the Cyber Security chair you will establish and work in a state-of-the-art IoT (Internet of Things) lab with smart devices ranging from Raspberry Pi's, sensors, smart microphones, toy cars, RFID tags, RFID readers, smart phones, biometric sensors and you will work with world-leading researchers to implement, test, and showcase secure and privacy-preserving protocols and algorithms. Many projects are done in collaboration with other academic and industrial partners. More specifically, the job includes:
  • Development and implementation of concepts and research results, both individually and in collaboration with researchers and PhD students,
  • Run of experiments and simulation of realistic conditions to test the performance of developed algorithms and protocols,
  • Development, maintenance and organization of software,
  • Support to BSc, MSc and PhD students, postdocs and researchers who use the lab,
  • Responsibility for day routines in the lab, for example purchases, installations, bookings, inventory.
Your profile:
  • The successful applicant is expected to hold or to be about to receive a M.Sc. degree in Computer Science, Electrical Engineering, Applied Mathematics or similar fields
  • Good command of English is required.
  • You should have a good academic track record and well developed analytical and problem solving skills.
  • Excellent programming skills and familiarity with cryptographic libraries.
  • Previous experience in implementation projects with C++, Matlab/Simulink, Python is desired.


Deadline: 10 August

Closing date for applications:

Contact: Katerina Mitrokotsa

More information: https://jobs.unisg.ch/offene-stellen/cryptography-engineer-m-w-d/634aea27-37d2-4f1f-ab25-2d3c0a622fc0

Expand

28 July 2021

Yevgeniy Dodis, Siyao Guo, Noah Stephens-Davidowitz, Zhiye Xie
ePrint Report ePrint Report
In this work, we characterize online linear extractors. In other words, given a matrix $A \in \mathbb{F}_2^{n \times n}$, we study the convergence of the iterated process $\mathbf{S} \leftarrow A\mathbf{S} \oplus \mathbf{X} $, where $\mathbf{X} \sim D$ is repeatedly sampled independently from some fixed (but unknown) distribution $D$ with (min)-entropy at least $k$. Here, we think of $\mathbf{S} \in \{0,1\}^n$ as the state of an online extractor, and $\mathbf{X} \in \{0,1\}^n$ as its input.

As our main result, we show that the state $\mathbf{S}$ converges to the uniform distribution for all input distributions $D$ with entropy $k > 0$ if and only if the matrix $A$ has no non-trivial invariant subspace (i.e., a non-zero subspace $V \subsetneq \mathbb{F}_2^n$ such that $AV \subseteq V$). In other words, a matrix $A$ yields an online linear extractor if and only if $A$ has no non-trivial invariant subspace. For example, the linear transformation corresponding to multiplication by a generator of the field $\mathbb{F}_{2^n}$ yields a good online linear extractor. Furthermore, for any such matrix convergence takes at most $\widetilde{O}(n^2(k+1)/k^2)$ steps.

We also study the more general notion of condensing---that is, we ask when this process converges to a distribution with entropy at least $\ell$, when the input distribution has entropy greater than $k$. (Extractors corresponding to the special case when $\ell = n$.) We show that a matrix gives a good condenser if there are relatively few vectors $\mathbf{w} \in \mathbb{F}_2^n$ such that $\mathbf{w}, A^T\mathbf{w}, \ldots, (A^T)^{n-k-1} \mathbf{w}$ are linearly dependent. As an application, we show that the very simple cyclic rotation transformation $A(x_1,\ldots, x_n) = (x_n,x_1,\ldots, x_{n-1})$ condenses to $\ell = n-1$ bits for any $k > 1$ if $n$ is a prime satisfying a certain simple number-theoretic condition.

Our proofs are Fourier-analytic and rely on a novel lemma, which gives a tight bound on the product of certain Fourier coefficients of any entropic distribution.
Expand
◄ Previous Next ►