International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

24 March 2023

Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan
ePrint Report ePrint Report
This work discusses real world deniability in messaging. We highlight how the different models for cryptographic deniability do not ensure practical deniability. To overcome this situation, we propose a model for real world deniability that takes into account the entire messaging system. We then discuss how deniability is (not) used in practice and the challenges arising from the design of a deniable system. We propose a simple, yet powerful solution for deniability: applications should enable direct modification of local messages; we discuss the impacts of this strong deniability property.
Expand
Kang Hoon Lee, Ji Won Yoon
ePrint Report ePrint Report
In recent history of fully homomorphic encryption, bootstrapping has been actively studied throughout many HE schemes. As bootstrapping is an essential process to transform somewhat homomorphic encryption schemes into fully homomorphic, enhancing its performance is one of the key factors of improving the utility of homomorphic encryption.

In this paper, we propose an extended bootstrapping for TFHE, which we name it by EBS. One of the main drawback of TFHE bootstrapping was that the precision of bootstrapping is mainly decided by the polynomial dimension $N$. Thus if one wants to bootstrap with high precision, one must enlarge $N$, or take alternative method. Our EBS enables to use small $N$ for parameter selection, but to bootstrap in higher dimension to keep high precision. Moreover, it can be easily parallelized for faster computation. Also, the EBS can be easily adapted to other known variants of TFHE bootstrappings based on the original bootstrapping algorithm.

We implement our EBS along with the full domain bootstrapping methods known ($\mathsf{FDFB}$, $\mathsf{TOTA}$, $\mathsf{Comp}$), and show how much our EBS can improve the precision for those bootstrapping methods. We provide experimental results and thorough analysis with our EBS, and show that EBS is capable of bootstrapping with high precision even with small $N$, thus small key size, and small complexity than selecting large $N$ by birth.
Expand
Keita Emura
ePrint Report ePrint Report
As a multi-receiver variant of public key authenticated encryption with keyword search (PAEKS), broadcast authenticated encryption with keyword search (BAEKS) was proposed by Liu et al. (ACISP 2021). BAEKS focuses on receiver anonymity, where no information about the receiver is leaked from ciphertexts, which is reminiscent of the anonymous broadcast encryption. Here, there are rooms for improving their security definitions, e.g., two challenge sets of receivers are selected before the setup phase, and an adversary is not allowed to corrupt any receiver. In this paper, we propose a generic construction of BAEKS derived from PAEKS that provides ciphertext anonymity and consistency in a multi-receiver setting. The proposed construction is an extension of the generic construction proposed by Libert et al. (PKC 2012) for the anonymous broadcast encryption and provides adaptive corruptions. We also demonstrate that the Qin et al. PAEKS scheme (ProvSec 2021) provides ciphertext anonymity and consistency in a multi-receiver setting.
Expand
Antigoni Polychroniadou, Gilad Asharov, Benjamin Diamond, Tucker Balch, Hans Buehler, Richard Hua, Suwen Gu, Greg Gimler, Manuela Veloso
ePrint Report ePrint Report
Inventory matching is a standard mechanism for trading financial stocks by which buyers and sellers can be paired. In the financial world, banks often undertake the task of finding such matches between their clients. The related stocks can be traded without adversely impacting the market price for either client. If matches between clients are found, the bank can offer the trade at advantageous rates. If no match is found, the parties have to buy or sell the stock in the public market, which introduces additional costs.

A problem with the process as it is presently conducted is that the involved parties must share their order to buy or sell a particular stock, along with the intended quantity (number of shares), to the bank. Clients worry that if this information were to “leak” somehow, then other market participants would become aware of their intentions and thus cause the price to move adversely against them before their transaction finalizes.

We provide a solution, Prime Match, that enables clients to match their orders efficiently with reduced market impact while maintaining privacy. In the case where there are no matches, no information is revealed. Our main cryptographic innovation is a two-round secure linear comparison protocol for computing the minimum between two quantities without preprocessing and with malicious security, which can be of independent interest. We report benchmarks of our Prime Match system, which runs in production and is adopted by a large bank in the US -- J.P. Morgan. The system is designed utilizing a star topology network, which provides clients with a centralized node (the bank) as an alternative to the idealized assumption of point-to-point connections, which would be impractical and undesired for the clients to implement in reality.

Prime Match is the first secure multiparty computation solution running live in the traditional financial world.
Expand
Wai-Kong Lee, Raymond K. Zhao, Ron Steinfeld, Amin Sakzad, Seong Oun Hwang
ePrint Report ePrint Report
The US National Institute of Standards and Technology initiated a standardization process for post-quantum cryptography in 2017, with the aim of selecting key encapsulation mechanisms and signature schemes that can withstand the threat from emerging quantum computers. In 2022, Falcon was selected as one of the standard signature schemes, eventually attracting effort to optimize the implementation of Falcon on various hardware architectures for practical applications. Recently, Mitaka was proposed as an alternative to Falcon, allowing parallel execution of most of its operations. These recent advancements motivate us to develop high throughput implementations of Falcon and Mitaka signature schemes on Graphics Processing Units (GPUs), a massively parallel architecture widely available on cloud service platforms. In this paper, we propose the first parallel implementation of Falcon on various GPUs. An iterative version of the sampling process in Falcon, which is also the most time-consuming Falcon operation, was developed. This allows us to implement Falcon signature generation without relying on expensive recursive function calls on GPUs. In addition, we propose a parallel random samples generation approach to accelerate the performance of Mitaka on GPUs. We evaluate our implementation techniques on state-of-the-art GPU architectures (RTX 3080, A100, T4 and V100). Experimental results show that our Falcon-512 implementation achieves 58, 595 signatures/second and 2, 721, 562 verifications/second on an A100 GPU, which is 20.03× and 29.51× faster than the highly optimized AVX2 implementation on CPU. Our Mitaka implementation achieves 161, 985 signatures/second and 1, 421, 046 verifications/second on the same GPU. Due to the adoption of a parallelizable sampling process, Mitaka signature generation enjoys ≈ 2 – 20× higher throughput than Falcon on various GPUs. The high throughput signature generation and verification achieved by this work can be very useful in various emerging applications, including the Internet of Things.
Expand
Tomer Ashur, Erik Takke
ePrint Report ePrint Report
In SAC’14, Biham and Carmeli presented a novel attack on DES, involving a variation of Partitioning Cryptanalysis. This was further extended in ToSC’18 by Biham and Perle into the Conditional Linear Cryptanalysis in the context of Feistel ciphers. In this work, we formalize this cryptanalytic technique for block ciphers in general and derive several properties. This conditional approximation is then used to approximate the inv : GF(2^8) → GF(2^8) : x → x^254 function which forms the only source of non-linearity in the AES. By extending the approximation to encompass the full AES round function, a linear distinguisher for four-round AES in the known-plaintext model is constructed; the existence of which is often understood to be impossible. We furthermore demonstrate a key-recovery attack capable of extracting 32 bits of information in 4-round AES using 2^125.62 data and time. In addition to suggesting a new approach to advancing the cryptanalysis of the AES, this result moreover demonstrates a caveat in the standard interpretation of the Wide Trail Strategy — the design framework underlying many SPN-based ciphers published in recent years.
Expand
Dahlia Malkhi, Kartik Nayak
ePrint Report ePrint Report
In this paper, we observe that it is possible to solve partially-synchronous BFT and simultaneously achieves $O(n^2)$ worst-case communication, optimistically linear communication, a two-phase commit regime within a view, and optimistic responsiveness. Prior work falls short in achieving one or more of these properties, e.g., the most closely related work, HotStuff, requires a three-phase view while achieving all other properties. We demonstrate that these properties are achievable through a two-phase HotStuff variant named HotStuff-2.

The quest for two-phase HotStuff variants that achieve all the above desirable properties has been long, producing a series of results that are yet sub-optimal and, at the same time, are based on somewhat heavy hammers. HotStuff-2 demonstrates that none of these are necessary: HotStuff-2 is remarkably simple, adding no substantive complexity to the original HotStuff protocol.

The main takeaway is that two phases are enough for BFT after all.
Expand
Giuseppe D'Alconzo
ePrint Report ePrint Report
Starting from the problem of $d$-Tensor Isomorphism ($d$-TI), we study the relation between various Code Equivalence problems in different metrics. In particular, we show a reduction from the sum-rank metric (CE${}_{sr}$) to the rank metric (CE${}_{rk}$). To obtain this result, we investigate reductions between tensor problems. We define the Monomial Isomorphism problem for $d$-tensors ($d$-TI${}^*$ ), where, given two $d$-tensors, we ask if there are $d-1$ invertible matrices and a monomial matrix sending one tensor into the other. We link this problem to the well-studied $d$-TI and the TI-completeness of $d$-TI${}^*$ is shown. Due to this result, we obtain a reduction from CE${}_{sr}$ to CE${}_{rk}$. In the literature, a similar result was known, but it needs an additional assumption on the automorphisms of matrix codes. Since many constructions based on the hardness of Code Equivalence problems are emerging in cryptography, we analyze how such reductions can be taken into account in the design of cryptosystems based on CE${}_{sr}$.
Expand
Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, Daniele Venturi
ePrint Report ePrint Report
Registered encryption (Garg {\em et al.}, TCC'18) is an emerging paradigm that tackles the key-escrow problem associated with identity-based encryption by replacing the private-key generator with a much weaker entity known as the key curator. The key curator holds no secret information, and is responsible to: (i) update the master public key whenever a new user registers its own public key to the system; (ii) provide helper decryption keys to the users already in the system, in order to make them still able to decrypt. For practical purposes, tasks (i) and (ii) need to be efficient, in the sense that the size of the public parameters, of the master public key, and of the helper decryption keys, as well as the running time for key generation and user registration, and the number of updates, must be small.

In this paper, we generalize the notion of registered encryption to the setting of functional encryption (FE). Our contributions are twofold: On the one hand, we show that registered FE exists assuming indistinguishability obfuscation and somewhere statistically binding hash functions. On the other hand, we show an efficient construction of registered FE for the special case of inner-product predicates, over asymmetric bilinear groups of prime order, with provable security in the generic group model.
Expand
Joël Alwen, Marta Mularczyk, Yiannis Tselekounis
ePrint Report ePrint Report
Continuous Group Key Agreement (CGKA) lets a evolving group of clients agree on a sequence of group keys. An important application of CGKA is scalable asynchronous end-to-end (E2E) encrypted group messaging.

A major problem preventing the use of CGKA over unreliable infrastructure are so-called forks. A fork occurs when group members have diverging views of the group's history (and thus its current state); e.g. due to network or server failures. Once communication channels are restored, members resolve a fork by agreeing on the state of the group again. Today's CGKA protocols make fork resolution challenging, as natural resolution strategies seem to conflict with the way the protocols enforce group state agreement and forward secrecy. Meanwhile, secure group messaging protocols which do support fork resolution do not scale nearly as well as CGKA does.

In this work, we pave the way to practical scalable E2E messaging over unreliable infrastructure. To that end, we generalize CGKA to Fork Resilient-CGKA which allows clients to process significantly more types of out-of-order network traffic. This is important for many natural fork resolution procedures as they are based, in part, on replaying missed traffic. Next, we give two FR-CGKA constructions: a practical one based on the CGKA underlying the MLS messaging standard and an optimally secure one (albeit with only theoretical efficiency). To further assist with fork resolution, we introduce a simple new abstraction to describe a client's local protocol state. The abstraction describes all and only the information relevant to natural fork resolution, making it easier for higher-level fork resolution procedures to work with and reason about. We define a black-box extension of an FR-CGKA which maintains such a description of a client's internal state. Finally, as a proof of concept, we give a basic fork resolution protocol.
Expand
Liam Eagen, Ariel Gabizon
ePrint Report ePrint Report
Given two KZG-committed polynomials $f(X),g(X)\in \mathbb{F}_{
Expand
Justin Holmgren, Ruta Jawale
ePrint Report ePrint Report
The goal of a covert learning algorithm is to learn a function $f$ by querying it, while ensuring that an adversary, who sees all queries and their responses, is unable to (efficiently) learn any more about $f$ than they could learn from random input-output pairs. We focus on a relaxation that we call local covertness, in which queries are distributed across $k$ servers and we only limit what is learnable by $k - 1$ colluding servers.

For any constant $k$, we give a locally covert algorithm for efficiently learning any Fourier-sparse function (technically, our notion of learning is improper, agnostic, and with respect to the uniform distribution). Our result holds unconditionally and for computationally unbounded adversaries. Prior to our work, such an algorithm was known only for the special case of $O(\log n)$-juntas, and only with $k = 2$ servers, Ishai et al. (Crypto 2019).

Our main technical observation is that the original Goldreich-Levin algorithm only utilizes i.i.d. pairs of correlated queries, where each half of every pair is uniformly random. We give a simple generalization of this algorithm in which pairs are replaced by $k$-tuples in which any $k - 1$ components are jointly uniform. The cost of this generalization is that the number of queries needed grows exponentially with $k$.
Expand
Rhys Weatherley
ePrint Report ePrint Report
NIST selected the A SCON family of cryptographic primitives for standardization in February 2023 as the final step in the Lightweight Cryptography Competition. The ASCON submission to the competition provided Authenticated Encryption with Associated Data (AEAD), hashing, and Extensible Output Function (XOF) modes. Real world cryptography systems often need more than packet encryption and simple hashing. Keyed message authentication, key derivation, cryptographically secure pseudo-random number generation (CSPRNG), password hashing, and encryption of sensitive values in memory are also important. This paper defines additional modes that can be deployed on top of ASCON based on proven designs from the literature.
Expand
Dmitrii Koshelev
ePrint Report ePrint Report
The present article provides a novel hash function $\mathcal{H}$ to any elliptic curve of $j$-invariant $\neq 0, 1728$ over a finite field $\mathbb{F}_{\!q}$ of large characteristic. The unique bottleneck of $\mathcal{H}$ consists in extracting a square root in $\mathbb{F}_{\!q}$ as well as for most hash functions. However, $\mathcal{H}$ is designed in such a way that the root can be found by (Cipolla-Lehmer-)Müller's algorithm in constant time. Violation of this security condition is known to be the only obstacle to applying the given algorithm in the cryptographic context. When the field $\mathbb{F}_{\!q}$ is highly $2$-adic and $q \equiv 1 \ (\mathrm{mod} \ 3)$, the new batching technique is the state-of-the-art hashing solution except for some sporadic curves. Indeed, Müller's algorithm costs $\approx 2\log_2(q)$ multiplications in $\mathbb{F}_{\!q}$. In turn, (constant-time) Tonelli-Shanks's square root algorithm has asymptotic complexity $O(\log(q) + \nu^2)$, where $\nu$ is the $2$-adicity of $\mathbb{F}_{\!q}$. As an example, Müller's algorithm needs $\approx 4561$ fewer multiplications in the field $\mathbb{F}_{\!q}$ (whose $\nu = 96$) of the standardized curve NIST P-224. In other words, there is an acceleration of about $11$ times.
Expand
Sahiba Suryawanshi, Dhiman Saha, Shashwat jaiswal
ePrint Report ePrint Report
An important tool that has contributed to collision search on Keccak/SHA3 is the Target Difference Algorithm (TDA) and its inter- nal differential counterpart Target Internal Difference Algorithm (TIDA), which were introduced by Dinur et al. in separate works in FSE 2012 and 2013 respectively. These algorithms provide an ingenious way of extend- ing the differential trails by one round and exploiting the affine subspaces generated due to the low algebraic degree of the Keccak S-box. The cur- rent work introduces TIDAL, which can extend TIDA by one more round capitalizing on linearization techniques introduced by Guo et al. in JoC. This approach requires increment consistency checks, which is also im- proved in this work. The TIDAL strategy, in conjunction with a determin- istic internal differential trail, has been applied to Keccak variants up to 400-bit state-size and leads to practical collision attacks for most of them up to 5 rounds. In particular collisions have been confirmed for 4-round Keccak[136, 64] with a complexity of 220 and on 6-round of Keccak[84,16] with a complexity of 25 . Further, this work completely characterizes all collision attacks on state-reduced variants, showcasing that TIDAL covers most space up to 5 rounds. As state and round-reduced Keccak variants are used to realize the internal states of many crypto primitives, the re- sults presented here generate a significant impact. Finally, it shows new directions for the long-standing problem of state-reduced variants being difficult to be attacked.
Expand
Lucjan Hanzlik
ePrint Report ePrint Report
Blind signatures allow a signer to issue signatures on messages chosen by the signature recipient. The main property is that the recipient's message is hidden from the signer. There are many applications, including Chaum's e-cash system and Privacy Pass, where no special distribution of the signed message is required, and the message can be random. Interestingly, existing notions do not consider this practical use case separately.

In this paper, we show that constraining the recipient's choice over the message distribution spawns a surprising new primitive that improves the well-established state-of-the-art. We formalize this concept by introducing the notion of non-interactive blind signatures (${\sf NIBS}$). Informally, the signer can create a presignature with a specific recipient in mind, identifiable via a public key. The recipient can use her secret key to finalize it and receive a blind signature on a random message determined by the finalization process. The key idea is that online interaction between the signer and recipient is unnecessary. We show an efficient instantiation of ${\sf NIBS}$ in the random oracle model from signatures on equivalence classes.

The exciting part is that, in this case, for the recipient's public key, we can use preexisting keys for Schnorr, ECDSA signatures, El-Gamal encryption scheme, or even the Diffie-Hellman key exchange. Reusing preexisting public keys allows us to distribute anonymous tokens similarly to cryptocurrency airdropping. Additional contributions include tagged non-interactive blind signatures (${\sf TNIBS}$) and their efficient instantiation. A generic construction in the random oracle or common reference string model based on verifiable random functions, standard signatures, and non-interactive proof systems.
Expand
Geoffroy Couteau, Pierre Meyer, Alain Passelègue, Mahshid Riahinia
ePrint Report ePrint Report
We propose and analyze a simple strategy for constructing 1-key constrained pseudorandom functions (CPRFs) from homomorphic secret sharing. In the process, we obtain the following contributions. First, we identify desirable properties for the underlying HSS scheme for our strategy to work. Second, we show that (most) recent existing HSS schemes satisfy these properties, leading to instantiations of CPRFs for various constraints and from various assumptions. Notably, we obtain the first (1-key selectively secure, private) CPRFs for inner-product and (1-key selectively secure) CPRFs for NC 1 from the DCR assumption, and more. Lastly, we revisit two applications of HSS, equipped with these additional properties, to secure computation: we obtain secure computation in the silent preprocessing model with one party being able to precompute its whole preprocessing material before even knowing the other party, and we construct one-sided statistically secure computation with sublinear communication for restricted forms of computation.
Expand
Julia Len, Esha Ghosh, Paul Grubbs, Paul Rösler
ePrint Report ePrint Report
The Digital Markets Act (DMA) is a nascent European Union regulation adopted in May 2022. One of its most controversial provisions is a requirement that so-called “gatekeepers” offering end-to-end encrypted messaging apps, such as WhatsApp, implement “interoperability” with other messaging apps: in essence, encrypted messaging across service providers. This requirement represents a fundamental shift in the design assumptions of existing encrypted messaging systems, most of which are designed to be centralized. Technologists have not really begun thinking about the myriad security, privacy, and functionality questions raised by the interoperability requirement; given that the DMA’s interoperability mandate may take effect as soon as mid-2024, it is critical for researchers to begin understanding the challenges and offering solutions.

In this paper, we take an initial step in this direction. We break down the DMA’s effects on the design of encrypted messaging systems into three main areas: identity, or how to resolve identities across service providers; protocols, or how to establish a secure connection between clients on different platforms; and abuse prevention, or how service providers can detect and take action against users engaging in abuse or spam. For each area, we identify key security and privacy requirements, summarize existing proposals, and examine whether proposals meet our security and privacy requirements. Finally, we propose our own design for an interoperable encrypted messaging system, and point out open problems.
Expand
Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, Violetta Weger
ePrint Report ePrint Report
The Restricted Syndrome Decoding Problem (R-SDP) cor- responds to the Syndrome Decoding Problem (SDP) with the additional constraint that entries of the solution vector must live in a desired sub- set of a finite field. In this paper we study how this problem can be applied to the construction of signatures derived from Zero-Knowledge (ZK) proofs. First, we show that R-SDP appears to be well suited for this type of applications: almost all ZK protocols relying on SDP can be modified to use R-SDP, with important reductions in the communication cost. Then, we describe how R-SDP can be further specialized, so that solutions can be represented with a number of bits that is slightly larger than the security parameter (which clearly provides an ultimate lower bound), thus enabling the design of ZK protocols with tighter and rather competitive parameters. Finally, we show that existing ZK protocols can greatly benefit from the use of R-SDP, achieving signature sizes in the order of 7 kB, which are smaller than those of several other schemes ob- tained from ZK protocols. For instance, this beats all schemes based on the Permuted Kernel Problem (PKP), almost all schemes based on SDP and several schemes based on rank metric problems.
Expand
zhenfei zhang
ePrint Report ePrint Report
We present Origami verifiable delay function, build from the MinRoot hash and our dedicated plonk proof system that utilizes a tai- lored custom gate and a folding scheme. MinRoot VDF is the leading candidate for Ethereum adoption. For N iterations of MinRoot hash func- tion, the overall cost of Origami is N +o(N ) group operations; improving the previous best known result of 6N from a Nova based solution. The proof size is 128k + 224 bytes if we fold the proofs for k times; and may be further reduce to around 960 bytes, regardless of k, via a standard recursive prover.
Expand
◄ Previous Next ►