International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

22 May 2023

Giuseppe D'Alconzo, Andrea Flamini, Andrea Gangemi
ePrint Report ePrint Report
Group actions are becoming a viable option for post-quantum cryptography assumptions. Indeed, in recent years some works have shown how to construct primitives from assumptions based on isogenies of elliptic curves, such as CSIDH, on tensors or on code equivalence problems. This paper presents a bit commitment scheme, built on non-transitive group actions, which is shown to be secure in the standard model, under the decisional Group Action Inversion Problem. In particular, the commitment is computationally hiding and perfectly binding, and is obtained from a novel and general framework that exploits the properties of some orbit-invariant functions, together with group actions. Previous constructions depend on an interaction between the sender and the receiver in the commitment phase, which results in an interactive bit commitment. We instead propose the first non-interactive bit commitment based on group actions. Then we show that, when the sender is honest, the constructed commitment enjoys an additional feature, i.e., it is possible to tell whether two commitments were obtained from the same input, without revealing the input. We define the security properties that such a construction must satisfy, and we call this primitive linkable commitment. Finally, as an example, an instantiation of the scheme using tensors with coefficients in a finite field is provided. In this case, the invariant function is the computation of the rank of a tensor, and the cryptographic assumption is related to the Tensor Isomorphism problem.
Expand
Mugurel Barcau, Vicentiu Pasol, George C Turcas
ePrint Report ePrint Report
The present work builds on previous investigations of the authors (and their collaborators) regarding bridges, a certain type of morphisms between encryption schemes, making a step forward in developing a (category theory) language for studying relations between encryption schemes. Here we analyse the conditions under which bridges can be performed sequentially, formalizing the notion of composability. One of our results gives a sufficient condition for a pair of bridges to be composable. We illustrate that composing two bridges, each independently satisfying a previously established IND-CPA security definition, can actually lead to an insecure bridge. Our main result gives a sufficient condition that a pair of secure composable bridges should satisfy in order for their composition to be a secure bridge. We also introduce the concept of a complete bridge and show that it is connected to the notion of Fully composable Homomorphic Encryption (FcHE), recently considered by Micciancio. Moreover, we show that a result of Micciancio which gives a construction of FcHE schemes can be phrased in the language of complete bridges, where his insights can be formalised in a greater generality.
Expand
Supriya Adhikary, Angshuman Karmakar
ePrint Report ePrint Report
With the increased use of data and communication through the internet and the abundant misuse of personal data by many organizations, people are more sensitive about their privacy. Privacy-preserving computation is becoming increasingly important in this era. Functional encryption allows a user to evaluate a function on encrypted data without revealing sensitive information. Most implementations of functional encryption schemes are too time-consuming for practical use. Mera et al. first proposed an inner product functional encryption scheme based on ring learning with errors to improve efficiency. In this work, we optimize the implementation of their work and propose a fast inner product functional encryption library. Specifically, we identify the main performance bottleneck, which is the number theoretic transformation based polynomial multiplication used in the scheme. We also identify the micro and macro level parallel components of the scheme and propose novel techniques to improve the efficiency using $\textit{open multi-processing}$ and $\textit{advanced vector extensions 2}$ vector processor. Compared to the original implementation, our optimization methods translate to $89.72\%$, $83.06\%$, $59.30\%$, and $53.80\%$ improvements in the $\textbf{Setup}$, $\textbf{Encrypt}$, $\textbf{KeyGen}$, and $\textbf{Decrypt}$ operations respectively, in the scheme for standard security level. Designing privacy-preserving applications using functional encryption is ongoing research. Therefore, as an additional contribution to this work, we design a privacy-preserving biometric authentication scheme using inner product functional encryption primitives.
Expand
Tung Le, Rouzbeh Behnia, Jorge Guajardo, Thang Hoang
ePrint Report ePrint Report
Searchable encrypted systems enable privacy-preserving keyword search on encrypted data. Symmetric Searchable Encryption (SSE) achieves high security (e.g., forward privacy) and efficiency (i.e., sublinear search), but it only supports single-user. Public Key Searchable Encryption (PEKS) supports multi-user settings, however, it suffers from inherent security limitations such as being vulnerable to keyword-guessing attacks and the lack of forward privacy. Recent work has combined SSE and PEKS to achieve the best of both worlds: support multi-user settings, provide forward privacy while having sublinear complexity. However, despite their elegant design, the existing hybrid scheme inherits some of the security limitations of the underlying paradigms (e.g., patterns leakage, keyword-guessing) and might not be suitable for certain applications due to costly public-key operations (e.g., bilinear pairing). In this paper, we propose MUSES, a new multi-user encrypted search scheme that addresses the limitations in the existing hybrid design, while offering user efficiency. Specifically, MUSES permits multi-user functionalities (reader/writer separation, permission revocation), prevents keyword-guessing attacks, protects search/result patterns, achieves forward/backward privacy, and features minimal user overhead. In MUSES, we demonstrate a unique incorporation of various state-of-the-art distributed cryptographic protocols including Distributed Point Function, Distributed PRF, and Secret-Shared Shuffle. We also introduce a new oblivious shuffle protocol for the general ?-party setting with dishonest majority, which can be of independent interest. Our experimental results indicated that the keyword search in our scheme is two orders of magnitude faster with 13× lower user bandwidth overhead than the state-of-the-art.
Expand
Erkan Tairi, Akın Ünal
ePrint Report ePrint Report
Functional encryption (FE) is a primitive where the holder of a master secret key can control which functions a user can evaluate on encrypted data. It is a powerful primitive that even implies indistinguishability obfuscation (iO), given sufficiently compact ciphertexts (Ananth-Jain, CRYPTO'15 and Bitansky-Vaikuntanathan, FOCS'15). However, despite being extensively studied, there are FE schemes, such as function-hiding inner-product FE (Bishop-Jain-Kowalczyk, AC'15, Abdalla-Catalano-Fiore-Gay-Ursu, CRYPTO’18) and compact quadratic FE (Baltico-Catalano-Fiore-Gay, Lin, CRYPTO’17), that can be only realized using pairings. This raises whether there are some mathematical barriers which hinder us from realizing these FE schemes from other assumptions.

In this paper, we study the difficulty of constructing lattice-based compact FE. We generalize the impossibility results of Ünal (EC'20) for lattice-based function-hiding FE, and extend it to the case of compact FE. Concretely, we prove lower bounds for lattice-based compact FE schemes which meet some (natural) algebraic restrictions at encryption and decryption, and have messages and ciphertexts of constant dimensions. We see our results as important indications of why it is hard to construct lattice-based FE schemes for new functionalities, and which mathematical barriers have to be overcome.
Expand
Giacomo Borin, Edoardo Persichetti, Paolo Santini
ePrint Report ePrint Report
In this work, we describe a technique to amplify the soundness of zero-knowledge proofs of knowledge for cryptographic group actions.
Expand
Felice Manganiello, Freeman Slaughter
ePrint Report ePrint Report
This paper introduces a new family of CVE schemes built from generic errors (GE-CVE) and identifies a vulnerability therein. To introduce the problem, we generalize the concept of error sets beyond those defined by a metric, and use the set-theoretic difference operator to characterize when these error sets are detectable or correctable by codes. We prove the existence of a general, metric-less form of the Gilbert-Varshamov bound, and show that - like in the Hamming setting - a random code corrects a generic error set with overwhelming probability. We define the generic error SDP (GE-SDP), which is contained in the complexity class of NP-hard problems, and use its hardness to demonstrate the security of GE-CVE. We prove that these schemes are complete, sound, and zero-knowledge. Finally, we identify a vulnerability of the GE-SDP for codes defined over large extension fields and without a very high rate. We show that certain GE-CVE parameters suffer from this vulnerability, notably the restricted CVE scheme.
Expand
Malik Imran, Aikata Aikata, Sujoy Sinha Roy, Samuel pagliarini
ePrint Report ePrint Report
In this brief, we realize different architectural techniques towards improving the performance of post-quantum cryptography (PQC) algorithms when implemented as hardware accelerators on an application-specific integrated circuit (ASIC) platform. Having SABER as a case study, we designed a 256-bit wide architecture geared for high-speed cryptographic applications that incorporates smaller and distributed SRAM memory blocks. Moreover, we have adapted the building blocks of SABER to process 256-bit words. We have also used a buffer technique for efficient polynomial coefficient multiplications to reduce the clock cycle count. Finally, double-sponge functions are combined serially (one after another) in a high-speed KECCAK core to improve the hash operations of SHA/SHAKE. For key-generation, encapsulation, and decapsulation operations of SABER, our 256-bit wide accelerator with a single sponge function is 1.71x, 1.45x, and 1.78x faster compared to the raw clock cycle count of a serialized SABER design. Similarly, our 256-bit implementation with double-sponge functions takes 1.08x, 1.07x & 1.06x fewer clock cycles compared to its single-sponge counterpart. The studied optimization techniques are not specific to SABER - they can be utilized for improving the performance of other lattice-based PQC accelerators.
Expand
Fuchun Guo, Willy Susilo, Xiaofeng Chen, Peng Jiang, Jianchang Lai, Zhen Zhao
ePrint Report ePrint Report
Proposing novel cryptography schemes (e.g., encryption, signatures, and protocols) is one of the main research goals in modern cryptography. In this paper, based on more than 800 research papers since 1976 that we have surveyed, we introduce the research philosophy of cryptography behind these papers. We use ``benefits" and ``novelty" as the keywords to introduce the research philosophy of proposing new schemes, assuming that there is already one scheme proposed for a cryptography notion. Next, we introduce how benefits were explored in the literature and we have categorized the methodology into 3 ways for benefits, 6 types of benefits, and 17 benefit areas. As examples, we introduce 40 research strategies within these benefit areas that were invented in the literature. The introduced research strategies have covered most cryptography schemes published in top-tier cryptography conferences.
Expand
ChihYun Chuang, IHung Hsu, TingFang Lee
ePrint Report ePrint Report
The applications of Hierarchical Deterministic Wallet are rapidly growing in various areas such as cryptocurrency exchanges and hardware wallets. Improving privacy and security is more important than ever. In this study, we proposed a protocol that fully support a two-party computation of BIP32. Our protocol, similar to the distributed key generation, can generate each party’s secret share, the common chain-code, and the public key without revealing a seed and any descendant private keys. We also provided a simulation-based proof of our protocol assuming a rushing, static, and malicious adversary in the hybrid model. Our master key generation protocol produces up to total of two bit leakages from a honest party given the feature that the seeds will be re-selected after each execution. The proposed hardened child key derivation protocol leads up to a one bit leakage in the worst situation of simulation from a honest party and will be accumulated with each execution. Fortunately, in reality, this issue can be largely mitigated by adding some validation criteria of boolean circuits and masking the input shares before each execution. We then implemented the proposed protocol and ran in a single thread on a laptop which turned out with practically acceptable execution time. Lastly, the outputs of our protocol can be easily integrated with many threshold sign protocols.
Expand
Ali Dogan, Kemal Bicakci
ePrint Report ePrint Report
Recently, with the increasing interest in Central Bank Digital Currency (CBDC), many countries have been working on researching and developing digital currency. The most important reasons for this interest are that CBDC eliminates the disadvantages of traditional currencies and provides a safer, faster, and more efficient payment system. These benefits also come with challenges, such as safeguarding individuals’ privacy and ensuring regulatory mechanisms. While most researches address the privacy conflict between users and regulatory agencies, they miss an important detail. Important parts of a financial system are banks and financial institutions. Some studies ignore the need for privacy and include these institutions in the CBDC system, no system currently offers a solution to the privacy conflict between banks, financial institutions, and users. In this study, while we offer a solution to the privacy conflict between the user and the regulatory agencies, we also provide a solution to the privacy conflict between the user and the banks. Our solution, KAIME has also a modular structure. The privacy of the sender and receiver can be hidden if desired. Compared to previous related research, security analysis and implementation of KAIME is substantially simpler because simple and well-known cryptographic methods are used.
Expand
Alexandru Ionita
ePrint Report ePrint Report
Attribute-based encryption (ABE) is an asymmetric encryption method that allows expressive access granting mechanisms, with high applicability in modern IT infrastructure, such as Cloud or IoT systems. (Ezhilarasi et al., 2021; Touati and Challal, 2016) One open problem regarding ABE is using Boolean circuits as access structures. While Boolean Formulae were supported since the first ABE scheme proposed, there is still no efficient construction that supports Boolean circuits. We propose a new ABE scheme for a new access structure type, situated between Boolean formulae and Boolean circuits in terms of expressiveness. This key point in our construction is the usage of CAS-nodes, a structure modeling compartmented groups access structures. We also show that our CAS-nodes can be used to improve the efficiency of existing ABE schemes for Boolean circuits. Our construction is secure in the Selective Set Model under the bilinear Decisional Diffie-Hellman Assumption.
Expand
Serge Fehr, Yu-Hsuan Huang
ePrint Report ePrint Report
In this paper, we prove the quantum security of the signature scheme HAWK, proposed by Ducas, Postlethwaite, Pulles and van Woerden (ASIACRYPT 2022). More precisely, we reduce its strong unforgeability in the quantum random oracle model (QROM) to the hardness of the one-more SVP problem, which is the computational problem on which also the classical security analysis of HAWK relies. Our security proof deals with the quantum aspects in a rather black-box way, making it accessible also to non-quantum-experts.
Expand
Varun Madathil, Alessandra Scafuro
ePrint Report ePrint Report
In cryptocurrencies, all transactions are public. For their adoption, it is important that these transactions, while publicly verifiable, do not leak information about the identity and the balances of the transactors.

For UTXO-based cryptocurrencies, there are well-established approaches (e.g., ZCash) that guarantee full privacy to the transactors. Full privacy in UTXO means that each transaction is anonymous within the set of all private transactions ever posted on the blockchain.

In contrast, for account-based cryptocurrencies (e.g., Ethereum) full privacy, that is, privacy within the set of all accounts, seems to be impossible to achieve within the constraints of blockchain transactions (e.g., they have to fit in a block). Indeed, every approach proposed in the literature achieves only a much weaker privacy guarantee called $k-$anonymity where a transactor is private within a set of $k$ account holders. $k-$anonymity is achieved by adding $k$ accounts to the transaction, which concretely limits the anonymity guarantee to a very small constant (e.g., $~$64 for QuisQuis and $~$256 for anonymous Zether), compared to the set of all possible accounts.

In this paper, we propose a completely new approach that does not achieve anonymity by including more accounts in the transaction, but instead makes the transaction itself ``smarter''. Our key contribution is to provide a mechanism whereby a compact transaction can be used to correctly update all accounts. Intuitively, this guarantees that all accounts are equally likely to be the recipients/sender of such a transaction. We, therefore, provide the first protocol that guarantees full privacy in account-based cryptocurrencies PriFHEte

The contribution of this paper is theoretical. Our main objective is to demonstrate that achieving full privacy in account-based cryptocurrency is actually possible. We see our work as opening the door to new possibilities for anonymous account-based cryptocurrencies.

Nonetheless, in this paper, we also discuss PriFHEte's potential to be developed in practice by leveraging the power of off-chain scalability solutions such as zk rollups.
Expand
Alexandre Augusto Giron
ePrint Report ePrint Report
Post-Quantum Cryptography (PQC) defines cryptographic algorithms designed to resist the advent of the quantum computer. Most public-key cryptosystems today are vulnerable to quantum attackers, so a global-scale transition to PQC is expected. As a result, several entities foment efforts in PQC standardization, research, development, creation of Work Groups (WGs), and issuing adoption recommendations. However, there is a long road to broad PQC adoption in practice. This position paper describes why migrating to PQC is necessary and gathers evidence that the ``hybrid mode'' can help the migration process. Finally, it stresses that there are risks yet to be considered by the literature. Quantum-safe protocols are being evaluated, but more attention (and awareness) is needed for the software and protocols at the application layer. Lastly, this position paper gives further recommendations for a smother PQC migration.
Expand
Manuel Barbosa, Peter Schwabe
ePrint Report ePrint Report
The key generation of the lattice-based key-encapsulation mechanism CRYSTALS-Kyber (or short, just Kyber) involves a rejection-sampling routine to produce coefficients modulo $q=3329$ that look uniformly random. The input to this rejection sampling is output of the SHAKE-128 extendable output function (XOF). If this XOF is modelled as a random oracle with infinite output length, it is easy to see that Kyber terminates with probability 1; also, in this model, for any upper bound on the running time, the probability of termination is strictly smaller than 1.

In this short note we show that an (unconditional) upper bound for the running time for Kyber exists. Computing a tight upper bound, however, is (likely to be) infeasible. We remark that the result has no real practical value, except that it may be useful for computer-assisted reasoning about Kyber using tools that require a simple proof of termination.
Expand
Julia Kastner, Julian Loss, Omar Renawi
ePrint Report ePrint Report
We revisit the concurrent security guarantees of the well-known Anonymous Credentials Light (ACL) scheme (Baldimtsi and Lysyanskaya, CCS'13). This scheme was originally proven secure when executed sequentially, and its concurrent security was left as an open problem. A later work of Benhamouda et al. (EUROCRYPT'21) gave an efficient attack on ACL when executed concurrently, seemingly resolving this question once and for all.

In this work, we point out a subtle flaw in the attack of Benhamouda et al. on ACL and show, in spite of popular opinion, that it can be proven concurrently secure. Our modular proof in the algebraic group model uses an ID scheme as an intermediate step and leads to a major simplification of the complex security argument for Abe's Blind Signature scheme by Kastner et al. (PKC'22).
Expand
You Lyu, Shengli Liu
ePrint Report ePrint Report
In two-message authenticated key exchange (AKE), it is necessary for the initiator to keep a round state after sending the first round-message, because he/she has to derive his/her session key after receiving the second round-message. Up to now almost all two-message AKEs constructed from public-key encryption (PKE) only achieve weak security which does not allow the adversary obtaining the round state. How to support state reveal to obtain a better security called IND-AA security has been an open problem proposed by Hövelmann et al. (PKC 2020).

In this paper, we solve the open problem with a generic construction of two-message AKE from any CCA-secure Tagged Key Encapsulation Mechanism (TKEM). Our AKE supports state reveal and achieves IND-AA security. Given the fact that CCA-secure public-key encryption (PKE) implies CCA-secure TKEM, our AKE can be constructed from any CCA-secure PKE with proper message space. The abundant choices for CCA-secure PKE schemes lead to many IND-AA secure AKE schemes in the standard model. Moreover, following the online-extractability technique in recent work by Don et al. (Eurocrypt 2022), we can extend the Fujisaki-Okamoto transformation to transform any CPA-secure PKE into a CCA-secure Tagged KEM in the QROM model. Therefore, we obtain the first generic construction of IND-AA secure two-message AKE from CPA-secure PKE in the QROM model. This construction does not need any signature scheme, and this result is especially helpful in the post-quantum world, since the current quantum-secure PKE schemes are much more efficient than their signature counterparts.
Expand
Zhiyuan An, Haibo Tian, Chao Chen, Fangguo Zhang
ePrint Report ePrint Report
Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive, which provides security guarantee against coercion by allowing a sender to convincingly open the ciphertext into a fake message. Despite the notable result by Sahai and Waters STOC ’14 and other efforts in functionality extension, all the deniable public key encryption (DPKE) schemes suffer from intolerable overhead due to the heavy building blocks, e.g., translucent sets or indistinguishability obfuscation. Besides, none of them considers the possible damage from leakage in the real world, obstructing these protocols from practical use. To fill the gap, in this work we first present a simple and generic approach of sender-DPKE from ciphertext-simulatable encryption, which can be instantiated with nearly all the common PKE schemes. The core of this design is a newly-designed framework for flipping a bit-string that offers inverse polynomial distinguishability. Then we theoretically expound and experimentally show how classic side-channel attacks (timing or simple power attacks), can help the coercer to break deniability, along with feasible countermeasures.
Expand
Vipul Goyal, Chen-Da Liu-Zhang, Rafail Ostrovsky
ePrint Report ePrint Report
Current protocols for Multi-Party Computation (MPC) consider the setting where all parties have access to similar resources. For example, all parties have access to channels bounded by the same worst-case delay upper bound $\Delta$, and all channels have the same cost of communication. As a consequence, the overall protocol performance (resp. the communication cost) may be heavily affected by the slowest (resp. the most expensive) channel, even when most channels are fast (resp. cheap). Given the state of affairs, we initiate a systematic study of 'asymmetric' MPC. In asymmetric MPC, the parties are divided into two categories: fast and slow parties, depending on whether they have access to high-end or low-end resources. We investigate two different models. In the first, we consider asymmetric communication delays: Fast parties are connected via channels with small delay $\delta$ among themselves, while channels connected to (at least) one slow party have a large delay $\Delta \gg \delta$. In the second model, we consider asymmetric communication costs: Fast parties benefit from channels with cheap communication, while channels connected to a slow party have an expensive communication. We provide a wide range of positive and negative results exploring the trade-offs between the achievable number of tolerated corruptions $t$ and slow parties $s$, versus the round complexity and communication cost in each of the models. Among others, we achieve the following results. In the model with asymmetric communication delays, focusing on the information-theoretic (i-t) setting: - An i-t asymmetric MPC protocol with security with abort as long as $t+s < n$ and $t
Expand
◄ Previous Next ►