IACR News
If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.
Here you can see all recent updates to the IACR webpage. These updates are also available:
16 June 2023
Indian Institute of Technology Bhilai, Raipur, INDIA
Applications are invited from Indian nationals for the position of ‘Project Associate - 1’ in a IBITF-funded research project with the following details:
Title of the project:
HideAndSeek: Searchable Encryption for Financial Databases
Essential qualifications: Bachelor’s degree in Computer Science/Information Technology/Electrical Engineering/Electronics and Communications Engineering from a recognized University or equivalent.
Desirable: Preference will be given to candidates who have qualified GATE or CSIR-UGC NET and have working experience relevant to the project. Candidates with expertise in the following are strongly encouraged to apply:
1) Expertise in Python/C++/Java
2) Expertise in NoSQL and distributed databases such as MongoDB, Cassandra, Riak, etc.
3) Some familiarity with Cryptographic primitives
Title of the project:
HideAndSeek: Searchable Encryption for Financial Databases
Essential qualifications: Bachelor’s degree in Computer Science/Information Technology/Electrical Engineering/Electronics and Communications Engineering from a recognized University or equivalent.
Desirable: Preference will be given to candidates who have qualified GATE or CSIR-UGC NET and have working experience relevant to the project. Candidates with expertise in the following are strongly encouraged to apply:
1) Expertise in Python/C++/Java
2) Expertise in NoSQL and distributed databases such as MongoDB, Cassandra, Riak, etc.
3) Some familiarity with Cryptographic primitives
Closing date for applications:
Contact:
Dr. Dhiman Saha, CSE, IIT Bhilai
Dr. Subhajit Siddhanta, CSE, IIT Bhilai
More information: https://iitbhilai.ac.in/index.php?pid=adv_feb23_01
15 June 2023
Patrick Hough, Caroline Sandsbråten, Tjerand Silde
In recent years there has been much focus on the development of core cryptographic primitives based on lattice assumptions. This has been driven by the NIST call for post-quantum key encapsulation and digital signature specifications. However, there has been much less work on efficient privacy-preserving protocols with post-quantum security.
In this work we present an efficient electronic voting scheme from lattice assumptions, ensuring the long-term security of encrypted ballots and voters' privacy. The scheme relies on the NTRU and RLWE assumptions. We begin by conducting an extensive analysis of the concrete hardness of the NTRU problem. Extending the ternary-NTRU analysis of Ducas and van Woerden (ASIACRYPT 2021), we determine the concrete fatigue point of NTRU to be $q=0.0058\cdot\sigma^2\cdot d^{\: 2.484}$ (above which parameters become overstretched) for modulus $q$, ring dimension $d$, and secrets drawn from a Gaussian of parameter $\sigma$. Moreover, we demonstrate that the nature of this relation enables a more fine-grained choice of secret key sizes, leading to more efficient parameters in practice.
Using the above analysis, our second and main contribution is to significantly improve the efficiency of the state-of-the-art lattice-based voting scheme by Aranha et al. (ACM CCS 2023). Replacing the BGV encryption scheme with NTRU we obtain a factor $\times 5.3$ reduction in ciphertext size and $\times 2.6$ more efficient system overall, making the scheme suitable for use in real-world elections.
As an additional contribution, we analyse the (partially) blind signature scheme by del Pino and Katsumata (CRYPTO 2022). We note that the NTRU security is much lower than claimed and propose new parameters. This results in only a minor efficiency loss, enabled by our NTRU analysis where previous parameter selection techniques would have been much more detrimental.
In this work we present an efficient electronic voting scheme from lattice assumptions, ensuring the long-term security of encrypted ballots and voters' privacy. The scheme relies on the NTRU and RLWE assumptions. We begin by conducting an extensive analysis of the concrete hardness of the NTRU problem. Extending the ternary-NTRU analysis of Ducas and van Woerden (ASIACRYPT 2021), we determine the concrete fatigue point of NTRU to be $q=0.0058\cdot\sigma^2\cdot d^{\: 2.484}$ (above which parameters become overstretched) for modulus $q$, ring dimension $d$, and secrets drawn from a Gaussian of parameter $\sigma$. Moreover, we demonstrate that the nature of this relation enables a more fine-grained choice of secret key sizes, leading to more efficient parameters in practice.
Using the above analysis, our second and main contribution is to significantly improve the efficiency of the state-of-the-art lattice-based voting scheme by Aranha et al. (ACM CCS 2023). Replacing the BGV encryption scheme with NTRU we obtain a factor $\times 5.3$ reduction in ciphertext size and $\times 2.6$ more efficient system overall, making the scheme suitable for use in real-world elections.
As an additional contribution, we analyse the (partially) blind signature scheme by del Pino and Katsumata (CRYPTO 2022). We note that the NTRU security is much lower than claimed and propose new parameters. This results in only a minor efficiency loss, enabled by our NTRU analysis where previous parameter selection techniques would have been much more detrimental.
Abtin Afshar, Kai-Min Chung, Yao-Ching Hsieh, Yao-Ting Lin, Mohammad Mahmoody
Time-lock puzzles wrap a solution $\mathrm{s}$ inside a puzzle $\mathrm{P}$ in such a way that ``solving'' $\mathrm{P}$ to find $\mathrm{s}$ requires significantly more time than generating the pair $(\mathrm{s},\mathrm{P})$, even if the adversary has access to parallel computing; hence it can be thought of as sending a message $\mathrm{s}$ to the future. It is known [Mahmoody, Moran, Vadhan, Crypto'11] that when the source of hardness is only a random oracle, then any puzzle generator with $n$ queries can be (efficiently) broken by an adversary in $O(n)$ rounds of queries to the oracle.
In this work, we revisit time-lock puzzles in a quantum world by allowing the parties to use quantum computing and, in particular, access the random oracle in quantum superposition. An interesting setting is when the puzzle generator is efficient and classical, while the solver (who might be an entity developed in the future) is quantum powered and is supposed to need a long sequential time to succeed. We prove that in this setting there is no construction of time-lock puzzles solely from quantum (accessible) random oracles. In particular, for any $n$-query classical puzzle generator, our attack only asks $O(n)$ (also classical) queries to the random oracle, even though it does indeed run in quantum polynomial time if the honest puzzle solver needs quantum computing.
Assuming perfect completeness, we also show how to make the above attack run in exactly $n$ rounds while asking a total of $m\cdot n$ queries where $m$ is the query complexity of the puzzle solver. This is indeed tight in the round complexity, as we also prove that a classical puzzle scheme of Mahmoody et al. is also secure against quantum solvers who ask $n-1$ rounds of queries. In fact, even for the fully classical case, our attack quantitatively improves the total queries of the attack of Mahmoody et al. for the case of perfect completeness from $\Omega(mn \log n)$ to $mn$. Finally, assuming perfect completeness, we present an attack in the ``dual'' setting in which the puzzle generator is quantum while the solver is classical.
We then ask whether one can extend our classical-query attack to the fully quantum setting, in which both the puzzle generator and the solver could be quantum. We show a barrier for proving such results unconditionally. In particular, we show that if the folklore simulation conjecture, first formally stated by Aaronson and Ambainis [arXiv'2009] is false, then there is indeed a time-lock puzzle in the quantum random oracle model that cannot be broken by classical adversaries. This result improves the previous barrier of Austrin et. al [Crypto'22] about key agreements (that can have interactions in both directions) to time-lock puzzles (that only include unidirectional communication).
In this work, we revisit time-lock puzzles in a quantum world by allowing the parties to use quantum computing and, in particular, access the random oracle in quantum superposition. An interesting setting is when the puzzle generator is efficient and classical, while the solver (who might be an entity developed in the future) is quantum powered and is supposed to need a long sequential time to succeed. We prove that in this setting there is no construction of time-lock puzzles solely from quantum (accessible) random oracles. In particular, for any $n$-query classical puzzle generator, our attack only asks $O(n)$ (also classical) queries to the random oracle, even though it does indeed run in quantum polynomial time if the honest puzzle solver needs quantum computing.
Assuming perfect completeness, we also show how to make the above attack run in exactly $n$ rounds while asking a total of $m\cdot n$ queries where $m$ is the query complexity of the puzzle solver. This is indeed tight in the round complexity, as we also prove that a classical puzzle scheme of Mahmoody et al. is also secure against quantum solvers who ask $n-1$ rounds of queries. In fact, even for the fully classical case, our attack quantitatively improves the total queries of the attack of Mahmoody et al. for the case of perfect completeness from $\Omega(mn \log n)$ to $mn$. Finally, assuming perfect completeness, we present an attack in the ``dual'' setting in which the puzzle generator is quantum while the solver is classical.
We then ask whether one can extend our classical-query attack to the fully quantum setting, in which both the puzzle generator and the solver could be quantum. We show a barrier for proving such results unconditionally. In particular, we show that if the folklore simulation conjecture, first formally stated by Aaronson and Ambainis [arXiv'2009] is false, then there is indeed a time-lock puzzle in the quantum random oracle model that cannot be broken by classical adversaries. This result improves the previous barrier of Austrin et. al [Crypto'22] about key agreements (that can have interactions in both directions) to time-lock puzzles (that only include unidirectional communication).
Sree Vivek S, S. Sharmila Deva Selvi, Ramarathnam Venkatesan, C. Pandu Rangan
Practical Identity Based Encryption (IBE) schemes use the costly bilinear pairing computation. Clifford Cock proposed an IBE based on quadratic residuosity in 2001 which does not use bilinear pairing but was not efficient in practice, due to the large ciphertext size. In 2007, Boneh et al. proposed the first space efficient IBE that was also based on quadratic residuosity problem. It was an improvement over Cock's scheme but still the time required for encryption was quartic in the security parameter. In this paper, we propose a compact, space and time efficient identity based encryption scheme without pairing, based on a variant of Paillier Cryptosystem and prove it to be CPA secure. We have also proposed a CCA secure scheme based on the basic IBE scheme using the Fujisaki-Okamoto transformation. We have proved both the schemes in the random oracle model.
Jonathan Bootle, Alessandro Chiesa, Katerina Sotiraki
Succinct arguments that rely on the Merkle-tree paradigm introduced by Kilian (STOC 92) suffer from larger proof sizes in practice due to the use of generic cryptographic primitives. In contrast, succinct arguments with the smallest proof sizes in practice exploit homomorphic commitments. However these latter are quantum insecure, unlike succinct arguments based on the Merkle-tree paradigm.
A recent line of works seeks to address this limitation, by constructing quantum-safe succinct arguments that exploit lattice-based commitments. The eventual goal is smaller proof sizes than those achieved via the Merkle-tree paradigm. Alas, known constructions lack succinct verification. In this paper, we construct the first interactive argument system for NP with succinct verification that, departing from the Merkle-tree paradigm, exploits the homomorphic properties of lattice-based commitments. For an arithmetic circuit with N gates, our construction achieves verification time polylog(N) based on the hardness of the Ring Short-Integer-Solution (RSIS) problem.
The core technique in our construction is a delegation protocol built from commitment schemes based on leveled bilinear modules, a new notion that we deem of independent interest. We show that leveled bilinear modules can be realized from pre-quantum and from post-quantum cryptographic assumptions.
A recent line of works seeks to address this limitation, by constructing quantum-safe succinct arguments that exploit lattice-based commitments. The eventual goal is smaller proof sizes than those achieved via the Merkle-tree paradigm. Alas, known constructions lack succinct verification. In this paper, we construct the first interactive argument system for NP with succinct verification that, departing from the Merkle-tree paradigm, exploits the homomorphic properties of lattice-based commitments. For an arithmetic circuit with N gates, our construction achieves verification time polylog(N) based on the hardness of the Ring Short-Integer-Solution (RSIS) problem.
The core technique in our construction is a delegation protocol built from commitment schemes based on leveled bilinear modules, a new notion that we deem of independent interest. We show that leveled bilinear modules can be realized from pre-quantum and from post-quantum cryptographic assumptions.
Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam Ghosh, Marcel Nageler, Francesco Regazzoni
We introduce QARMAvii, a redesign of the tweakable block cipher QARMA to provide more robust security bounds and allow for longer tweaks,
while keeping very similar latency and area values.
The longer tweaks serve to address specific use cases and facilitate the design of modes of operation with higher security bounds.
This is achieved by adopting new key and tweak schedules, and by making some changes to the 128-bit versions,
as well as by performing a deeper security analysis.
The resulting cipher offers competitive latency and area in HW implementations.
Some of our results may be of independent interest. This includes new MILP models of certain classes of diffusion matrices, the comparative analysis of a full reflection cipher against an iterative half-cipher, and our boomerang attack framework.
The resulting cipher offers competitive latency and area in HW implementations.
Some of our results may be of independent interest. This includes new MILP models of certain classes of diffusion matrices, the comparative analysis of a full reflection cipher against an iterative half-cipher, and our boomerang attack framework.
Claude Carlet, Enrico Piccione
Given three positive integers $n
Alessandro Gecchele
Integer-order Rényi entropies are synthetic indices useful for the characterization of probability distributions. In recent decades, numerous studies have been conducted to arrive at valid estimates of these indices starting from experimental data, so to derive a suitable classification method for the underlying processes. However, optimal solutions have not been reached yet. A one-line formula limited to the estimation of collision entropy is presented here. The results of some specific Monte Carlo experiments gave evidence of its validity even for the very low densities of the data spread in high-dimensional sample spaces. The strengths of this method are unbiased consistency, generality and minimum computational cost.
14 June 2023
Nicolas Aragon, Victor Dyseryn, Philippe Gaborit
We present a new attack against the PSSI problem, one of the three problems at the root of security of Durandal, an efficient rank metric code-based signature scheme with a public key size of 15 kB and a signature size of 4 kB, presented at EUROCRYPT'19. Our attack recovers the private key using a leakage of information coming from several signatures produced with the same key. Our approach is to combine pairs of signatures and perform Cramer-like formulas in order to build subspaces containing a secret element. We break all existing parameters of Durandal: the two published sets of parameters claiming a security of 128 bits are broken in respectively $2^{66}$ and $2^{73}$ elementary bit operations, and the number of signatures required to finalize the attack is 1,792 and 4,096 respectively. We implemented our attack and ran experiments that demonstrated its success with smaller parameters.
Kaartik Bhushan, Venkata Koppula, Manoj Prabhakaran
In this work, we propose the notion of homomorphic indistinguishability obfuscation ($\mathsf{HiO}$) and present a construction based on subexponentially-secure $\mathsf{iO}$ and one-way functions. An $\mathsf{HiO}$ scheme allows us to convert an obfuscation of circuit $C$ to an obfuscation of $C'\circ C$, and this can be performed obliviously (that is, without knowing the circuit $C$). A naive solution would be to obfuscate $C' \circ \mathsf{iO}(C)$. However, if we do this for $k$ hops, then the size of the final obfuscation is exponential in $k$. $\mathsf{HiO}$ ensures that the size of the final obfuscation remains polynomial after repeated compositions. As an application, we show how to build function-hiding hierarchical multi-input functional encryption and homomorphic witness encryption using $\mathsf{HiO}$.
Christoph Dobraunig, Bart Mennink
The duplex construction is already well analyzed with many papers proving its security in the random permutation model. However, so far, the first phase of the duplex, where the state is initialized with a secret key and an initialization vector ($\mathit{IV}$), is typically analyzed in a worst case manner. More detailed, it is always assumed that the adversary is allowed to choose the $\mathit{IV}$ on its will. In this paper, we analyze how the security changes if restrictions on the choice of the $\mathit{IV}$ are imposed, varying from the global nonce case over the random $\mathit{IV}$ case to the $\mathit{IV}$ on key case. The last one, in particular, is the duplex analogue of the use of a nonce masked with a secret in AES-GCM in TLS 1.3. We apply our findings to duplex-based encryption and authenticated encryption, and discuss the practical applications of our results.
Ben Nassi, Etay Iluz, Or Cohen, Ofek Vayner, Dudi Nassi, Boris Zadov, Yuval Elovici
In this paper, we present video-based cryptanalysis,
a new method used to recover secret keys from a device by
analyzing video footage of a device’s power LED. We show that
cryptographic computations performed by the CPU change the
power consumption of the device which affects the brightness of
the device’s power LED. Based on this observation, we show how
attackers can exploit commercial video cameras (e.g., an iPhone
13’s camera or Internet-connected security camera) to recover
secret keys from devices. This is done by obtaining video footage
of a device’s power LED (in which the frame is filled with the
power LED) and exploiting the video camera’s rolling shutter
to increase the sampling rate by three orders of magnitude
from the FPS rate (60 measurements per second) to the rolling
shutter speed (60K measurements per second in the iPhone 13
Pro Max). The frames of the video footage of the device’s power
LED are analyzed in the RGB space, and the associated RGB
values are used to recover the secret key by inducing the power
consumption of the device from the RGB values. We demonstrate
the application of video-based cryptanalysis by performing two
side-channel cryptanalytic timing attacks and recover: (1) a 256-
bit ECDSA key from a smart card by analyzing video footage of
the power LED of a smart card reader via a hijacked Internet-connected security camera located 16 meters away from the smart
card reader, and (2) a 378-bit SIKE key from a Samsung Galaxy
S8 by analyzing video footage of the power LED of Logitech Z120
USB speakers that were connected to the same USB hub (that
was used to charge the Galaxy S8) via an iPhone 13 Pro Max.
Finally, we discuss countermeasures, limitations, and the future
of video-based cryptanalysis in light of the expected improvements
in video cameras’ specifications.
Marco Cianfriglia, Elia Onofri, Marco Pedicini
We address the problem of user fast revocation in the lattice based CP-ABE by extending the scheme originally introduced in [A ciphertext policy attribute-based encryption scheme without pairings. J. Zhang, Z. Zhang - ICISC 2011]. While a lot of work exists on the construction of revocable schemes for CP-ABE based on pairings, works based on lattices are not so common, and – to the best of our knowledge – we introduce the first server-aided revocation scheme in a lattice based CP-ABE scheme, hence providing post-quantum safety. In particular, we rely on semi-trusted "mediators" to provide a multi-step decryption capable of handling mediation without re-encryption.
We comment on the scheme and its application and we provide performance experiments on a prototype implementation in the ABE spin-off library of Palisade to evaluate the overhead compared with the original scheme.
Koji Nuida
Comparison of integers, a traditional topic in secure multiparty computation since Yao's pioneering work on "Millionaires' Problem" (FOCS 1982), is also well studied in card-based cryptography. For the problem, Miyahara et al. (Theoretical Computer Science, 2020) proposed a protocol using binary cards (i.e., cards with two kinds of symbols) that is highly efficient in terms of numbers of cards and shuffles, and its extension to number cards (i.e., cards with distinct symbols). In this paper, with a different design strategy which we name "Tug-of-War technique", we propose new protocols based on binary cards and on number cards. For binary cards, our protocol improves the previous protocol asymptotically (in bit lengths of input integers) in terms of numbers of cards and shuffles when adopting ternary encoding of input integers. For number cards, at the cost of increasing the number of cards, our protocol improves the number of shuffles of the previous protocol even with binary encoding, and more with $q$-ary encoding where $q > 2$.
Jitendra Bhandari, Likhitha Mankali, Mohammed Nabeel, Ozgur Sinanoglu, Ramesh Karri, Johann Knechtel
The increase in leakage power from advanced tech nodes elevates the risk of static power side-channel (S-PSC) attacks. While protective measures exist, they involve a security cost trade-off. Hardware Trojans, particularly PSC-based ones, represent another significant threat. Despite acknowledging the link between static power leakage, advanced tech nodes, and vulnerability to S-PSC attacks, the role of the components at the heart of this sensitive interplay – the standard cells – has not been extensively studied in commercial-grade IC design. We analyze this relationship for commercial 28nm and 65nm nodes using a regular AES design. Our CAD framework permits design optimization while assessing S-PSC vulnerability. Contrary to the belief that high-performance designs are more vulnerable, we find timing constraints and threshold-voltage cell ratios are pivotal factors. Also, we discover that an attacker can deploy highly effective, stealthy PSC-based Trojans without any gate overheads or compromising timing paths.
Satrajit Ghosh, Mark Simkin
Given $\ell$ parties with sets $X_1, \dots, X_\ell$ of size $n$, we would like to securely compute the intersection $\cap_{i=1}^\ell X_i$, if it is larger than $n-t$ for some threshold $t$, without revealing any other additional information. It has previously been shown (Ghosh and Simkin, Crypto 2019) that this function can be securely computed with a communication complexity that only depends on $t$ and in particular does not depend on $n$. For small values of $t$, this results in protocols that have a communication complexity that is sublinear in the size of the inputs. Current protocols either rely on fully homomorphic encryption or have an at least quadratic dependency on the parameter $t$.
In this work, we construct protocols with a quasilinear dependency on $t$ from simple assumptions like additively homomorphic encryption and oblivious transfer. All existing approaches, including ours, rely on protocols for computing a single bit, which indicates whether the intersection is larger than $n-t$ without actually computing it. Our key technical contribution, which may be of independent interest, takes any such protocol with secret shared outputs and communication complexity $\mathcal{O}(\lambda \ell \cdot\mathrm{poly}(t))$, where $\lambda$ is the security parameter, and transforms it into a protocol with communication complexity $\mathcal{O}(\lambda^2 \ell t \cdot\mathrm{polylog}(t))$.
In this work, we construct protocols with a quasilinear dependency on $t$ from simple assumptions like additively homomorphic encryption and oblivious transfer. All existing approaches, including ours, rely on protocols for computing a single bit, which indicates whether the intersection is larger than $n-t$ without actually computing it. Our key technical contribution, which may be of independent interest, takes any such protocol with secret shared outputs and communication complexity $\mathcal{O}(\lambda \ell \cdot\mathrm{poly}(t))$, where $\lambda$ is the security parameter, and transforms it into a protocol with communication complexity $\mathcal{O}(\lambda^2 \ell t \cdot\mathrm{polylog}(t))$.
Nils Fleischhacker, Kasper Green Larsen, Maciej Obremski, Mark Simkin
In this work we study Invertible Bloom Lookup Tables (IBLTs) with small failure probabilities. IBLTs are highly versatile data structures that have found applications in set reconciliation protocols, error-correcting codes, and even the design of advanced cryptographic primitives. For storing $n$ elements and ensuring correctness with probability at least $1 - \delta$, existing IBLT constructions require $\Omega(n(\frac{\log(1/\delta)}{\log(n)}+1))$ space and they crucially rely on fully random hash functions.
We present new constructions of IBLTs that are simultaneously more space efficient and require less randomness. For storing $n$ elements with a failure probability of at most $\delta$, our data structure only requires $\mathcal{O}(n + \log(1/\delta)\log\log(1/\delta))$ space and $\mathcal{O}(\log(\log(n)/\delta))$-wise independent hash functions.
As a key technical ingredient we show that hashing $n$ keys with any $k$-wise independent hash function $h:U \to [Cn]$ for some sufficiently large constant $C$ guarantees with probability $1 - 2^{-\Omega(k)}$ that at least $n/2$ keys will have a unique hash value. Proving this is highly non-trivial as $k$ approaches $n$. We believe that the techniques used to prove this statement may be of independent interest.
We present new constructions of IBLTs that are simultaneously more space efficient and require less randomness. For storing $n$ elements with a failure probability of at most $\delta$, our data structure only requires $\mathcal{O}(n + \log(1/\delta)\log\log(1/\delta))$ space and $\mathcal{O}(\log(\log(n)/\delta))$-wise independent hash functions.
As a key technical ingredient we show that hashing $n$ keys with any $k$-wise independent hash function $h:U \to [Cn]$ for some sufficiently large constant $C$ guarantees with probability $1 - 2^{-\Omega(k)}$ that at least $n/2$ keys will have a unique hash value. Proving this is highly non-trivial as $k$ approaches $n$. We believe that the techniques used to prove this statement may be of independent interest.
Tohru Kohrita, Patrick Towa
A multilinear polynomial is a multivariate polynomial that is linear in each variable. This paper presents a scheme to commit to multilinear polynomials and to later prove evaluations of committed polynomials. The construction of the scheme is generic and relies on additively homomorphic schemes to commit to univariate polynomials. As the construction requires to check that several committed univariate polynomials do not exceed given, separate bounds, the paper also gives a method to batch executions of any degree-check protocol on homomorphic commitments.
For a multilinear polynomial in n ≥ 2 variables, the instantiation of the scheme with a hiding version of KZG commitments (Kate, Zaverucha and Goldberg at Asiacrypt 2010) gives a pairing-based scheme with evaluations proofs in which the prover sends n + 3 first-group elements, performs at most 5 · 2n−1 + 1 first-group scalar multiplication and uses only n+2 random field elements to achieve the zero-knowledge property. Verification requires at most 2n + 2 first-group scalar multiplications, two second-group scalar multiplications and three pairing computations.
Mohsen Minaei, Panagiotis Chatzigiannis, Shan Jin, Srinivasan Raghuraman, Ranjit Kumaresan, Mahdi Zamani, Pedro Moreno-Sanchez
Payment channels allow a sender to do multiple transactions with a receiver without recording each single transaction on-chain. While most of the current constructions for payment channels focus on UTXO-based cryptocurrencies with reduced scripting capabilities (e.g., Bitcoin or Monero), little attention has been given to the possible benefits of adapting such constructions to cryptocurrencies based on the account model and offering a Turing complete language (e.g., Ethereum).
The focus of this work is to implement efficient payment channels tailored to the capabilities of account-based cryptocurrencies with Turing-complete language support in order to provide scalable payments that are interoperable across different cryptocurrencies and unlinkable for third-parties (e.g., payment intermediaries). More concretely, we continue the line of research on cryptocurrency universal payment channels (UPC) which facilitate interoperable payment channel transactions across different ledgers in a hub-and-spoke model, by offering greater scalability than point-to-point architectures. Our design proposes two different versions, UPC and AUPC. For UPC we formally describe the protocol ideas sketched in previous work and evaluate our proof-of-concept implementation. Then, AUPC further extends the concept of universal payment channels by payment unlinkability against the intermediary server.
Tore Kasper Frederiksen, Julia Hesse, Bertram Poettering, Patrick Towa
A Single Sign-On (SSO) system allows users to access different remote services while authenticating only once. SSO can greatly improve the usability and security of online activities by dispensing with the need to securely remember or store tens or hundreds of authentication secrets. On the downside, today's SSO providers can track users' online behavior, and collect personal data that service providers want to see asserted before letting a user access their resources.
In this work, we propose a new policy-based Single Sign-On service, i.e., a system that produces access tokens that are conditioned on the user's attributes fulfilling a specified policy. Our solution is based on multi-party computation and threshold cryptography, and generates access tokens of standardized format. The central idea is to distribute the role of the SSO provider among several entities, in order to shield user attributes and access patterns from each individual entity. We provide a formal security model and analysis in the Universal Composability framework, against proactive adversaries. Our implementation and benchmarking show the practicality of our system for many real-world use cases.
In this work, we propose a new policy-based Single Sign-On service, i.e., a system that produces access tokens that are conditioned on the user's attributes fulfilling a specified policy. Our solution is based on multi-party computation and threshold cryptography, and generates access tokens of standardized format. The central idea is to distribute the role of the SSO provider among several entities, in order to shield user attributes and access patterns from each individual entity. We provide a formal security model and analysis in the Universal Composability framework, against proactive adversaries. Our implementation and benchmarking show the practicality of our system for many real-world use cases.