IACR News
Here you can see all recent updates to the IACR webpage. These updates are also available:
05 February 2024
Patrick Derbez, Marie Euler
ePrint ReportThis result can be very useful when looking for an optimal GFN regarding specific computationally intensive properties, such as the minimal number of active S-boxes in a differential trail. We also show that in several previous papers, many GFN candidates are redundant as they belong to only a few classes. Because of this reduction of candidates, we are also able to suggest better permutations than the one of WARP: they reach 64 active S-boxes in one round less and still have the same diffusion round that WARP. Finally, we also point out a new family of permutations with good diffusion properties.
02 February 2024
Antonio Flórez-Gutiérrez, Yosuke Todo
ePrint ReportSamuel Stevens, Emily Wenger, Cathy Yuanchen Li, Niklas Nolte, Eshika Saxena, Francois Charton, Kristin Lauter
ePrint ReportShing Hing William Cheng, Chitchanok Chuengsatiansup, Daniel Genkin, Dallas McNeil, Toby Murray, Yuval Yarom, Zhiyuan Zhang
ePrint ReportIn this paper, we investigate how speculative out-of-order execution affects the Evict+Time cache attack. Evict+Time is based on the observation that cache misses are slower than cache hits, hence by measuring the execution time of code, an attacker can determine if a cache miss occurred during the execution. We demonstrate that, due to limited resources for tracking out-of-order execution, under certain conditions an attacker can gain more fine-grained information and determine whether a cache miss occurred in part of the executed code.
Based on the observation, we design the Evict+Spec+Time attack, a variant of Evict+Time that can learn not only whether a cache miss occurred, but also in which part of the victim code it occurred. We demonstrate that Evict+Spec+Time is an order of magnitude more efficient than Evict+Time when attacking a T-table-based implementation of AES. We further show an Evict+Spec+Time attack on an S-box-based implementation of AES, recovering the key with as little as 14389 decryptions. To the best of our knowledge, ours is the first successful Evict+Time attack on such a victim.
Charles Bouillaguet, Julia Sauvage
ePrint ReportThorben Moos, Sayandeep Saha, François-Xavier Standaert
ePrint ReportJonathan Komada Eriksen, Antonin Leroux
ePrint ReportCharlotte Hoffmann, Pavel Hubáček, Svetlana Ivanova
ePrint ReportIn this work, we introduce two batch PoEs that outperform both proposals of Rotem and we evaluate their practicality. First, we show that the two batch PoEs of Rotem can be combined to improve the overall efficiency by at least a factor of two. Second, we revisit the work of Bellare, Garay, and Rabin (EUROCRYPT 1998) on batch verification of digital signatures and show that, under the low order assumption, their bucket test can be securely adapted to the setting of groups of unknown order. The resulting batch PoE quickly outperforms the state of the art in the expected number of group multiplications with the growing number of instances, and it decreases the cost of batching by an order of magnitude already for hundreds of thousands of instances. Importantly, it is the first batch PoE that significantly decreases both the proof size and complexity of verification. Our experimental evaluations show that even a non-optimized implementation achieves such improvements, which would match the demands of real-life systems requiring large-scale PoE processing.
Finally, even though our proof techniques are conceptually similar to Rotem, we give an improved analysis of the application of the low order assumption towards secure batching of PoE instances, resulting in a tight reduction, which is important when setting the security parameter in practice.
Maria Corte-Real Santos, Craig Costello, Benjamin Smith
ePrint ReportXuanming Liu, Zhelei Zhou, Yinghao Wang, Bingsheng Zhang, Xiaohu Yang
ePrint ReportIn this work, we address this issue by lifting a zk-SNARK called Libra (Crypto 2019) to a collaborative zk-SNARK and achieve a fully distributed proof generation, where all servers take roughly the same portion of the total workload. Further, our protocol can be adapted to be secure against a malicious adversary by incorporating some verification mechanisms. With 128 consumer machines and a 4Gbps network, we successfully generate a proof for a data-parallel circuit containing $2^{23}$ gates in merely 2.5 seconds and take only 0.5 GB memory for each server. This represents a $19\times$ speed-up, compared to a local Libra prover. Our benchmark further indicates an impressive 877$\times$ improvement in running time and a 992$\times$ enhancement in communication compared to the implementation in previous work. Furthermore, our protocol is capable of handling larger circuits, making it scalable in practice.
Xiaohai Dai, Zhaonan Zhang, Jiang Xiao, Jingtao Yue, Xia Xie, Hai Jin
ePrint ReportTo reduce latency, we propose GradedDAG, a new DAG-based BFT consensus protocol based on our adapted RBC called Graded RBC (GRBC) and the Consistent Broadcast (CBC), with each wave consisting of only one GRBC round and one CBC round. Through GRBC, a replica can deliver data with a grade of 1 or 2, and a non-faulty replica delivering the data with grade 2 can ensure that more than 2/3 of replicas have delivered the same data. Meanwhile, through CBC, data delivered by different non-faulty replicas must be identical. In each wave, a block in the GRBC round will be elected as the leader. If a leader block has been delivered with grade 2, it and all its ancestor blocks can be committed. GradedDAG offers a good-case latency of 4 communication steps and an expected worst latency of 7.5 communication steps, significantly lower than the state-of-theart. Experimental results demonstrate GradedDAG’s feasibility and efficiency.
Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas, Junichi Tomida
ePrint ReportBoth JOIN and GROUP-BY involve many variants, and we design protocols for several common procedures. In particular, we propose a novel group-by-median protocol that has not been known so far. Our protocols rely on sorting protocols, and work in the honest majority setting and against malicious adversaries. To the best of our knowledge, this is the first implementation of JOIN and GROUP-BY protocols secure against a malicious adversary.
Binbin Tu, Min Zhang, Yu Chen
ePrint ReportIn this paper, we propose efficient ECDSA-based adaptor signature schemes and give security proofs based on ECDSA. In our schemes, the zero-knowledge proofs in the pre-signing phase can be generated in a batch and offline. Meanwhile, the online pre-signing algorithm is similar to the ECDSA signing algorithm and can enjoy the same efficiency as ECDSA. In particular, considering specific verification scenarios, such as (batched) atomic swaps, our schemes can reduce the number of zero-knowledge proofs in the pre-signing phase to one, independent of the number of participants. Last, we conduct an experimental evaluation, demonstrating that the performance of our ECDSA-based adaptor signature reduces online pre-signing time by about 60% compared with the state-of-the-art ECDSA-based adaptor signature.
David Heath
ePrint ReportWe construct arithmetic garbled circuits from circular correlation robust hashes, the assumption underlying the celebrated Free XOR garbling technique. Let $\lambda$ denote a computational security parameter, and consider the integers $\mathbb{Z}_m$ for any $m \geq 2$. Let $\ell = \lceil \log_2 m \rceil$ be the bit length of $\mathbb{Z}_m$ values. We garble arithmetic circuits over $\mathbb{Z}_m$ where the garbling of each gate has size $O(\ell \cdot \lambda)$ bits. Constrast this with Boolean-circuit-based arithmetic, requiring $O(\ell^2\cdot \lambda)$ bits via the schoolbook multiplication algorithm, or $O(\ell^{1.585}\cdot \lambda)$ bits via Karatsuba's algorithm.
Our arithmetic gates are compatible with Boolean operations and with Garbled RAM, allowing to garble complex programs of arithmetic values.
01 February 2024
Karlsruhe, Germany, 14 March - 15 March 2024
Event CalendarSubmission deadline: 18 February 2024
Notification: 26 February 2024
Stanford, USA, 14 August - 16 August 2024
Event CalendarSubmission deadline: 10 March 2024
Notification: 31 May 2024
University of Amsterdam, The Netherlands
Job PostingOur modern society relies upon numerous electronic devices that use encryption to communicate and operate securely. However, even strong cryptography can break when the device hardware is attacked. Thus, the University of Amsterdam is looking for a strong MSc graduate that is interested in Side-Channel Analysis, Hardware Security and Cryptographic Implementations.
What are you going to do?
Apply using the link:
https://vacatures.uva.nl/UvA/job/PhD-in-Side-Channel-Analysis/786914702/
Closing date for applications:
Contact: Kostas Papagiannopoulos, k.papagiannopoulos@uva.nl, kostaspap88@gmail.com
More information: https://vacatures.uva.nl/UvA/job/PhD-in-Side-Channel-Analysis/786914702/
Brandenburg University of Technology Cottbus-Senftenberg
Job Posting- Privacy-enhancing technologies in cyber-physical systems.
- AI-based network attack detection and simulation
- AI-enabled penetration testing
Closing date for applications:
Contact: Ivan Pryvalov (ivan.pryvalov@b-tu.de)
School of Computing and Information Technology, University of Wollongong, Australia
Job PostingClosing date for applications:
Contact: Dr. Zuoxia Yu (given name_first name at uow.edu.au)
TU Wien, Security and Privacy Research Unit
Job PostingYour profile:
- Master degree in computer science or equivalent (degree completion by employment start)
- Excellent English, communication, and teamwork skills
- Background in formal methods (e.g., automated reasoning, type systems, or proof assistants) or cryptography
- Experience in research is a plus
- A job in an internationally renowned group, which regularly publishes in top security venues, and consists of an international, diverse, and inclusive team with expertise in formal methods, cryptography, security, privacy, and blockchains
- Diverse research topics in formal methods for security and privacy, with a specific focus on cryptographic protocols and blockchains
- An international English-speaking environment (German not required)
- A competitive salary
- Flexible hours
- Motivation letter
- Bachelor/Master’s transcripts
- Publication list (if available)
- Curriculum vitae
- Contact information for two referees
Closing date for applications:
Contact: Univ.-Prof. Dr. Matteo Maffei
More information: https://tools.spycode.at/recruiting/call/5