International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

06 February 2024

Randy Kuang
ePrint Report ePrint Report
In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing matrix representations of the Galois Permutation Group and inheriting its bijective and non-commutative properties, QPP achieves quantum-secure symmetric key encryption, seamlessly extending Shannon’s perfect secrecy to both classical and quantum-native systems. Simultaneously, HPPK, free of NP-hard problems, relies on the security of symmetric encryption for the plain public key. This is accomplished by concealing the mathematical structure through arithmetic representations or modular multiplicative operators (arithmetic QPP) of the Galois Permutation Group over hidden rings, utilizing their partial homomorphic properties. This ensures secure computation on encrypted data during secret encapsulations, thereby enhancing the security of the plain public key. The integration of KEM and DS within HPPK cryptography results in compact key, cipher, and signature sizes, showcasing exceptional performance. This paper organically unifies QPP and HPPK under the Galois Permutation Group, marking a significant advance in laying the groundwork for quantum-resistant cryptographic protocols. Our contribution propels the development of secure communication systems in the era of quantum computing.
Expand
Helger Lipmaa, Roberto Parisella, Janno Siim
ePrint Report ePrint Report
We prove that the seminal KZG polynomial commitment scheme (PCS) is black-box extractable under a simple falsifiable assumption ARSDH. To create an interactive argument, we construct a compiler that combines a black-box extractable non-interactive PCS and a polynomial IOP (PIOP). The compiler incurs a minor cost per every committed polynomial. Applying the Fiat-Shamir transformation, we obtain slightly less efficient variants of well-known PIOP-based zk-SNARKs, such as Plonk, that are knowledge-sound in the ROM under the ARSDH assumption. Importantly, there is no need for idealized group models or knowledge assumptions. This results in the first known zk-SNARKs in the ROM from falsifiable assumptions with both an efficient prover and constant-size argument.
Expand
Zeyu Liu, Yunhao Wang
ePrint Report ePrint Report
BGV and BFV are among the most widely used fully homomorphic encryption (FHE) schemes, supporting evaluations over a finite field. To evaluate a circuit with arbitrary depth, bootstrapping is needed. However, despite the recent progress, bootstrapping of BGV/BFV still remains relatively impractical, compared to other FHE schemes.

In this work, we inspect the BGV/BFV bootstrapping procedure from a different angle. We provide a generalized bootstrapping definition that relaxes the correctness requirement of regular bootstrapping, allowing constructions that support only certain kinds of circuits with arbitrary depth. In addition, our definition captures a form of functional bootstrapping. In other words, the output encrypts a function evaluation of the input instead of the input itself. Under this new definition, we provide a bootstrapping procedure supporting different types of functions. Our construction is 1-2 orders of magnitude faster than the state-of-the-art BGV/BFV bootstrapping algorithms, depending on the evaluated function. Of independent interest, we show that our technique can be used to improve the batched FHEW/TFHE bootstrapping construction introduced by Liu and Wang (Asiacrypt 2023). Our optimization provides a speed-up of 6x in latency and 3x in throughput for batched binary gate bootstrapping and a plaintext-space-dependent speed-up for batched functional bootstrapping with plaintext space smaller than $\mathbb{Z}_{512}$.
Expand
Tairong Huang, Shihe Ma, Anyu Wang, XiaoYun Wang
ePrint Report ePrint Report
The computation of step functions over encrypted data is an essential issue in homomorphic encryption due to its fundamental application in privacy-preserving computing. However, an effective method for homomorphically computing general step functions remains elusive in cryptography. This paper proposes two polynomial approximation methods for general step functions to tackle this problem. The first method leverages the fact that any step function can be expressed as a linear combination of shifted sign functions. This connection enables the homomorphic evaluation of any step function using known polynomial approximations of the sign function. The second method boosts computational efficiency by employing a composite polynomial approximation strategy. We present a systematic approach to construct a composite polynomial $f_k \circ f_{k-1} \circ \cdots \circ f_1$ that increasingly approximates the step function as $k$ increases. This method utilizes an adaptive linear programming approach that we developed to optimize the approximation effect of $f_i$ while maintaining the degree and coefficients bounded. We demonstrate the effectiveness of these two methods by applying them to typical step functions such as the round function and encrypted data bucketing, implemented in the HEAAN homomorphic encryption library. Experimental results validate that our methods can effectively address the homomorphic computation of step functions.
Expand
Trevor Yap Hong Eng, Shivam Bhasin, Léo Weissbart
ePrint Report ePrint Report
Side-Channel Analysis (SCA) is critical in evaluating the security of cryptographic implementations. The search for hyperparameters poses a significant challenge, especially when resources are limited. In this work, we explore the efficacy of a multifidelity optimization technique known as BOHB in SCA. In addition, we proposed a new objective function called $ge_{+ntge}$, which could be incorporated into any Bayesian Optimization used in SCA. We show the capabilities of both BOHB and $ge_{+ntge}$ on four different public datasets. Specifically, BOHB could obtain the least number of traces in CTF2018 when trained in the Hamming weight and identity leakage model. Notably, this marks the first reported successful recovery of the key for the identity leakage model in CTF2018.
Expand
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
ePrint Report ePrint Report
Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not have access to the ciphertexts. While blind side-channel attacks are known for symmetric key cryptographic schemes, we are not aware of such attacks for Kyber KEM. In this paper, we fill this gap by proposing the first blind side-channel attack on Kyber KEM. We target leakage of the pointwise multiplication operation in the decryption procedure to carry out practical blind side-channel attacks resulting in full key recovery. We perform practical validation of our attack using power side-channel from the reference implementation of Kyber KEM taken from the pqm4 library, implemented on the ARM Cortex-M4 microcontroller. Our experiments clearly indicate the feasibility of our proposed attack in recovering the full key in only a few hundred to few thousand traces, in the presence of a suitably accurate Hamming Weight (HW) classifier.
Expand
Hanwen Feng, Zhenliang Lu, Qiang Tang
ePrint Report ePrint Report
There are long line of researches on the fundamental distributed key generation (DKG) protocols. Unfortunately, all of them suffer from a large cubic total communication, due to the fact that $O(n)$ participants need to {\em broadcast} to all $n$ participants.

We introduce the first two DKG protocols, both achieving optimal resilience, with sub-cubic total communication and computation. The first DKG generates a secret key within an Elliptic Curve group, incurring $\widetilde{\mathcal{O}}(n^{2.5}\lambda)$ total communication and computation. The second DKG, while slightly increasing communication and computation by a factor of the statistical security parameter, generates a secret key as a field element. This property makes it directly compatible with various off-the-shelf DLog-based threshold cryptographic systems. Additionally, both DKG protocols straightforwardly imply an improved (single-shot) common coin protocol.

At the core of our techniques, we develop a simple-yet-effective methodology via deterministic sharding that arbitrarily groups nodes into shards; and a new primitive called consortium-dealer secret sharing, to enable a shard of nodes to securely contribute a secret to the whole population only at the cost of one-dealer. We also formalize simulation-based security for publicly verifiable secret sharing (PVSS), making it possible for a modular analysis for DKG. Those might be of independent interest.
Expand
Trevor Yap, Dirmanto Jap
ePrint Report ePrint Report
In side-channel analysis (SCA), the success of an attack is largely dependent on the dataset sizes and the number of instances in each class. The generation of synthetic traces can help to improve attacks like profiling attacks. However, manually creating synthetic traces from actual traces is arduous. Therefore, automating this process of creating artificial traces is much needed. Recently, diffusion models have gained much recognition after beating another generative model known as Generative Adversarial Networks (GANs) in creating realistic images. We explore the usage of diffusion models in the domain of SCA. We proposed frameworks for a known mask setting and unknown mask setting in which the diffusion models could be applied. Under a known mask setting, we show that the traces generated under the proposed framework preserved the original leakage. Next, we demonstrated that the artificially created profiling data in the unknown mask setting can reduce the required attack traces for a profiling attack. This suggests that the artificially created profiling data from the trained diffusion model contains useful leakages to be exploited.
Expand
Hao Guo, Jintai Ding
ePrint Report ePrint Report
VOX is a UOV-like signature scheme submitted to Round 1 additional signatures of NIST PQC standardization process. In 2023 Furue and Ikematsu proposed a rectangular MinRank attack on VOX, resulting in the submitters changing their parameters to counter this attack. In this paper we propose a new type of MinRank attack called padded MinRank attack. We show that the attack is highly efficient in its running time, taking less than one minute to break eight of nine parameters and about eight hours for the remaining one. Therefore the parameters of VOX should be reexamined to ensure its safety.
Expand
Brent Waters, David J. Wu
ePrint Report ePrint Report
A succinct non-interactive argument (SNARG) for $\mathsf{NP}$ allows a prover to convince a verifier that an $\mathsf{NP}$ statement $x$ is true with a proof of size $o(|x| + |w|)$, where $w$ is the associated $\mathsf{NP}$ witness. A SNARG satisfies adaptive soundness if the malicious prover can choose the statement to prove after seeing the scheme parameters. In this work, we provide the first adaptively-sound SNARG for $\mathsf{NP}$ in the plain model assuming sub-exponentially-hard indistinguishability obfuscation, sub-exponentially-hard one-way functions, and either the (polynomial) hardness of the discrete log assumption or the (polynomial) hardness of factoring. This gives the first adaptively-sound SNARG for $\mathsf{NP}$ from falsifiable assumptions. All previous SNARGs for $\mathsf{NP}$ in the plain model either relied on non-falsifiable cryptographic assumptions or satisfied a weak notion of non-adaptive soundness (where the adversary has to choose the statement it proves before seeing the scheme parameters).
Expand
Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang
ePrint Report ePrint Report
Power-of-two cyclotomics is a popular choice when instantiating the BGV scheme because of its efficiency and compliance with the FHE standard. However, in power-of-two cyclotomics, the linear transformations in BGV bootstrapping cannot be decomposed into sub-transformations for acceleration with existing techniques. Thus, they can be highly time-consuming when the number of slots is large, degrading the advantage brought by the SIMD property of the plaintext space. By exploiting the algebraic structure of power-of-two cyclotomics, this paper derives explicit decomposition of the linear transformations in BGV bootstrapping into NTT-like sub-transformations, which are highly efficient to compute homomorphically. Moreover, multiple optimizations are made to evaluate homomorphic linear transformations, including modified BSGS algorithms, trade-offs between level and time, and specific simplifications for thin and general bootstrapping. We implement our method on HElib. With the number of slots ranging from 4096 to 32768, we obtain a 7.35x$\sim$143x improvement in the running time of linear transformations and a 4.79x$\sim$66.4x improvement in bootstrapping throughput, compared to previous works or the naive approach.
Expand
Chun Guo, Xiao Wang, Kang Yang, Yu Yu
ePrint Report ePrint Report
We continue the study of blockcipher-based (tweakable) correlation robust hash functions, which are central building blocks of circuit garbling and oblivious-transfer extension schemes. As results, we first enhance the multi-user tweakable correlation robust notion of Guo et al. (CRYPTO 2020) with a {\it key leaking oracle} that tells the adversary whether a certain user key satisfies the adversarially-chosen predicate. We then investigate the state-of-the-art hash construction of Guo et al. with respect to our new security definition, providing security proof as well as matching attacks. As an application, we exhibit an OT extension protocol with non-trivial multi-user security.
Expand

05 February 2024

Copenhagen, Denmark, 19 August - 22 August 2024
Event Calendar Event Calendar
Event date: 19 August to 22 August 2024
Submission deadline: 15 March 2024
Notification: 20 May 2024
Expand
London, United Kingdom, 2 September - 4 September 2024
Event Calendar Event Calendar
Event date: 2 September to 4 September 2024
Submission deadline: 3 May 2024
Notification: 5 June 2024
Expand
Darmstadt, Germany, 3 June - 6 June 2024
Event Calendar Event Calendar
Event date: 3 June to 6 June 2024
Submission deadline: 26 February 2024
Notification: 22 March 2024
Expand
Logos (Nomos ZK Team)
Job Posting Job Posting
The team require specialized role to bring in-depth knowledge and experience with ZK proofs and related tools and frameworks. This expertise will facilitate expedited prototyping, research, design of the proving system, and help in developing ZK-friendly solutions for the requirements of multiple components of the Nomos blockchain. The constant flux of tasks, varying in size and scope, requires a team member who can seamlessly integrate into the team and contribute immediately.

Key Responsibilities

Develop an in-depth understanding of the multi-layered architecture of Nomos and how Zero Knowledge proofs can be effectively utilized at various stages. Collaborate with other researchers and developers to ensure that Nomos's systems and protocols are efficiently designed and implemented. Address and solve upgradeability concerns related to ZK schemes and ensure consensus proofs are ZK-friendly. Design and help implement privacy-centered protocols that require the use of ZK proofs. Evaluate and integrate ZK tools and frameworks to optimize the performance and efficiency of our systems. Stay abreast of the latest developments and trends in the field of Zero Knowledge proofs and blockchain technology. Provide support and guidance to the team on ZK proofs related issues.

You ideally will have

  • A strong technical background, preferably with a degree in Computer Science, Mathematics, or a related field (PhD-level or equivalent in industry); relevant research experience.
  • Extensive knowledge and experience with Zero Knowledge proofs, cryptography, and blockchain technology.
  • Deep understanding of Zero-Knowledge proof systems (zk-SNARK, circom, Plonk/Halo2, zk-STARK), elliptic curve cryptography, and circuit design.
  • Previous experience in a similar role, where you successfully contributed to the development of complex systems using ZK proofs.

    Closing date for applications:

    Contact: Angel

    More information: https://grnh.se/60ae0cb71us

  • Expand
    SanboxAQ (USA, remote; Europe, remote; Canada, remote)
    Job Posting Job Posting

    The SandboxAQ team is looking for a Research Scientist to help functionalize the next generation of cryptographic systems. A successful candidate will be comfortable with research in post-quantum cryptography. We are open to strong candidates that reinforce existing expertise of the team as well as candidates extending our expertise. They will be part of a team of diverse cryptographers and engineers, where they will play a key role in efficient and effective enablement of the technologies being developed. They can learn more about what we’ve been doing so far by checking out the publications of our permanent researchers: Carlos Aguilar Melchor, Martin Albrecht, Nina Bindel, James Howe, Andreas Hülsing, and Anand Kumar Narayanan

    Core Responsibilities
    • Research and design of new post-quantum cryptography primitives and protocols
    • Engage in team collaborations to meet ambitious product and engineering goals
    • Present research discoveries and developments including updates and results clearly and efficiently both internally and externally, verbally and in writing
    Minimum Qualifications
    • PhD in Mathematics or Computer Science or equivalent practical experience
    • Strong background in post-quantum cryptography with a proven publication record at flagship conferences
    • Deep understanding of cryptographic primitives and protocols
    • Capacity to work both as an individual contributor and on collaborative projects with strong teamwork skills
    Preferred Qualifications
    • Experience in C, C++, Rust or Go, or equivalent skills to implement and validate innovative cryptographic constructions and/or protocols
    • Experience with the real-world aspects of cryptography
    • Experience contributing to open source projects and standardization bodies
    • Curiosity in a variety of domains of cryptography, security, privacy, or engineering
    SandboxAQ is committed to equal employment opportunities and offers competitive compensation. For more details have a look at the official job offer https://www.sandboxaq.com/careers-list?gh_jid=5072034004

    Closing date for applications:

    Contact: carlos.aguilar@sandboxaq.com

    More information: https://www.sandboxaq.com/careers-list?gh_jid=5072034004

    Expand
    UCLouvain Crypto Group, Louvain-la-Neuve, Belgium
    Job Posting Job Posting
    The UCLouvain Crypto Group is opening two short-term positions (3 to 6 months) in the field of side-channel secure cryptographic implementation. This project consists in either developing a masked hardware implementation of the Ascon AEAD, or developing a software masking of Dilithium for micro-controllers (with possibly other countermeasures). The goal of the project is to research and develop high-quality and well-documented open-source implementations, along with preliminary side-channel security evaluations, as part of the SIMPLE-Crypto (https://simple-crypto.org) initiative. The work will take place in the dynamic research environment of the Crypto Group at UCLouvain (Louvain-la-Neuve, Belgium) and the SIMPLE-Crypto team, in collaboration with other Ph.D. students, post-doctoral researchers and professors. The candidates should have experience in physical side-channel security and have strong implementation skills (hardware or micro-controller programming, depending on the chosen project). Remote work is possible. Applications will be examined continously.

    Closing date for applications:

    Contact: Candidates are invited to send a resume and motivation letter to Dr. Gaetan Cassiers and Pr. Francois-Xavier Standaert (email: first name dot last name at uclouvain.be).

    More information: https://simple-crypto.org

    Expand
    Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopoulos, Jonathan Katz
    ePrint Report ePrint Report
    A zero-knowledge proof of training (zkPoT) enables a party to prove that they have correctly trained a committed model based on a committed dataset without revealing any additional information about the model or the dataset. An ideal zkPoT should offer provable security and privacy guarantees, succinct proof size and verifier runtime, and practical prover efficiency. In this work, we present Kaizen, a zkPoT targeted for deep neural networks (DNNs) that achieves the above ideals all at once. In particular, our construction enables a prover to iteratively train their model by the (mini-batch) gradient-descent algorithm where the number of iterations need not be fixed in advance; at the end of each iteration, the prover generates a commitment to the trained model attached with a succinct zkPoT, attesting to the correctness of the entire training process. The proof size and verifier time are independent of the iteration number.

    Kaizen relies on two essential building blocks to achieve both prover efficiency and verification succinctness. First, we construct an optimized GKR-style (sumcheck-based) proof system for the gradient-descent algorithm with concretely efficient prover cost; this scheme allows the prover to generate a proof for each iteration of the training process. Then, we recursively compose these proofs across multiple iterations to attain succinctness. As of independent interests, we propose a framework for recursive composition of GKR-style proofs and techniques, such as aggregatable polynomial commitment schemes, to minimize the recursion overhead.

    Benchmarks indicate that Kaizen can handle a large model of VGG-$11$ with $10$ million parameters and batch size $16$. The prover runtime is $22$ minutes (per iteration), which is $\mathbf{43\times}$ faster than generic recursive proofs, while we further achieve at least $\mathbf{224 \times}$ less prover memory overhead. Independent of the number of iterations and, hence, the size of the dataset, the proof size is $1.36$ megabytes, and the verifier runtime is only $103$ milliseconds.
    Expand
    Mingshu Cong, Tsz Hon Yuen, Siu Ming Yiu
    ePrint Report ePrint Report
    Matrix multiplication is a common operation in applications like machine learning and data analytics. To demonstrate the correctness of such an operation in a privacy-preserving manner, we propose zkMatrix, a zero-knowledge proof for the multiplication of committed matrices. Among the succinct non-interactive zero-knowledge protocols that have an $O(\log n)$ transcript size and $O(\log n)$ verifier time, zkMatrix stands out as the first to achieve $O(n^2)$ prover time and $O(n^2)$ RAM usage for multiplying two $n \times n$ matrices. Significantly, zkMatrix distinguishes itself as the first zk-SNARK protocol specifically designed for matrix multiplication. By batching multiple proofs together, each additional matrix multiplication only necessitates $O(n)$ group operations in prover time.
    Expand
    ◄ Previous Next ►