IACR News
Here you can see all recent updates to the IACR webpage. These updates are also available:
11 October 2024
Haoxing Lin, Prashant Nalini Vasudevan
ePrint Report
The $k$-Tree algorithm [Wagner 02] is a non-trivial algorithm for the average-case $k$-SUM problem that has found widespread use in cryptanalysis. Its input consists of $k$ lists, each containing $n$ integers from a range of size $m$. Wagner's original heuristic analysis suggested that this algorithm succeeds with constant probability if $n \approx m^{1/(\log{k}+1)}$, and that in this case it runs in time $O(kn)$. Subsequent rigorous analysis of the algorithm [Lyubashevsky 05, Shallue 08, Joux-Kippen-Loss 24] has shown that it succeeds with high probability if the input list sizes are significantly larger than this.
We present a broader rigorous analysis of the $k$-Tree algorithm, showing upper and lower bounds on its success probability and complexity for any size of the input lists. Our results confirm Wagner's heuristic conclusions, and also give meaningful bounds for a wide range of list sizes that are not covered by existing analyses. We present analytical bounds that are asymptotically tight, as well as an efficient algorithm that computes (provably correct) bounds for a wide range of concrete parameter settings. We also do the same for the $k$-Tree algorithm over $\mathbb{Z}_m$. Finally, we present experimental evaluation of the tightness of our results.
We present a broader rigorous analysis of the $k$-Tree algorithm, showing upper and lower bounds on its success probability and complexity for any size of the input lists. Our results confirm Wagner's heuristic conclusions, and also give meaningful bounds for a wide range of list sizes that are not covered by existing analyses. We present analytical bounds that are asymptotically tight, as well as an efficient algorithm that computes (provably correct) bounds for a wide range of concrete parameter settings. We also do the same for the $k$-Tree algorithm over $\mathbb{Z}_m$. Finally, we present experimental evaluation of the tightness of our results.
Jiaxing He, Kang Yang, Guofeng Tang, Zhangjie Huang, Li Lin, Changzheng Wei, Ying Yan, Wei Wang
ePrint Report
We present $\textit{Rhombus}$, a new secure matrix-vector multiplication (MVM) protocol in the semi-honest two-party setting, which is able to be seamlessly integrated into existing privacy-preserving machine learning (PPML) frameworks and serve as the basis of secure computation in linear layers.
$\textit{Rhombus}$ adopts RLWE-based homomorphic encryption (HE) with coefficient encoding, which allows messages to be chosen from not only a field $\mathbb{F}_p$ but also a ring $\mathbb{Z}_{2^\ell}$, where the latter supports faster computation in non-linear layers. To achieve better efficiency, we develop an input-output packing technique that reduces the communication cost incurred by HE with coefficient encoding by about $21\times$, and propose a split-point picking technique that reduces the number of rotations to that sublinear in the matrix dimension. Compared to the recent protocol $\textit{HELiKs}$ by Balla and Koushanfar (CCS'23), our implementation demonstrates that $\textit{Rhombus}$ improves the whole performance of an MVM protocol by a factor of $7.4\times \sim 8\times$, and improves the end-to-end performance of secure two-party inference of ResNet50 by a factor of $4.6\times \sim 18\times$.
Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, Marcin Mielniczuk
ePrint Report
We address the problem of detecting and punishing shareholder collusion in secret-sharing schemes. We do it in the recently proposed cryptographic model called individual cryptography (Dziembowski, Faust, and Lizurej, Crypto 2023), which assumes that there exist tasks that can be efficiently computed by a single machine but distributing this computation across multiple (mutually distrustful devices) is infeasible.
Within this model, we introduce a novel primitive called secret sharing with snitching (SSS), in which each attempt to illegally reconstruct the shared secret $S$ results in a proof that can be used to prove such misbehavior (and, e.g., financially penalize the cheater on a blockchain). This holds in a very strong sense, even if the shareholders attempt not to reconstruct the entire secret~$S$ but only learn some partial information about it. Our notion also captures the attacks performed using multiparty computation protocols (MPCs), i.e., those where the malicious shareholders use MPCs to compute partial information on $S$. The main idea of SSS is that any illegal reconstruction can be proven and punished, which suffices to discourage illegal secret reconstruction. Hence, our SSS scheme effectively prevents shareholders' collusion. We provide a basic definition of threshold ($t$-out-of-$n$) SSS. We then show how to construct it for $t = n$, and later, we use this construction to build an SSS scheme for an arbitrary $t$.
In order to prove the security of our construction, we introduce a generalization of the random oracle model (Bellare, Rogaway, CCS 1993), which allows modelling hash evaluations made inside MPC.
Within this model, we introduce a novel primitive called secret sharing with snitching (SSS), in which each attempt to illegally reconstruct the shared secret $S$ results in a proof that can be used to prove such misbehavior (and, e.g., financially penalize the cheater on a blockchain). This holds in a very strong sense, even if the shareholders attempt not to reconstruct the entire secret~$S$ but only learn some partial information about it. Our notion also captures the attacks performed using multiparty computation protocols (MPCs), i.e., those where the malicious shareholders use MPCs to compute partial information on $S$. The main idea of SSS is that any illegal reconstruction can be proven and punished, which suffices to discourage illegal secret reconstruction. Hence, our SSS scheme effectively prevents shareholders' collusion. We provide a basic definition of threshold ($t$-out-of-$n$) SSS. We then show how to construct it for $t = n$, and later, we use this construction to build an SSS scheme for an arbitrary $t$.
In order to prove the security of our construction, we introduce a generalization of the random oracle model (Bellare, Rogaway, CCS 1993), which allows modelling hash evaluations made inside MPC.
Martijn Brehm, Binyi Chen, Ben Fisch, Nicolas Resch, Ron D. Rothblum, Hadas Zeilberger
ePrint Report
In this work we construct a new and highly efficient multilinear polynomial commitment scheme (MLPCS) over binary fields, which we call \emph{Blaze}. Polynomial commitment schemes allow a server to commit to a large polynomial and later decommit to its evaluations. Such schemes have emerged as a key component in recent efficient SNARK constructions.
Blaze has an extremely efficient prover, both asymptotically and concretely. The commitment is dominated by $8n$ field additions (i.e., XORs) and one Merkle tree computation. The evaluation proof generation is dominated by $6n$ additions and $5n$ multiplications over the field. The verifier runs in time $O_\lambda(\log^2(n))$. Concretely, for sufficiently large message sizes, the prover is faster than all prior schemes except for Brakedown (Golovnev et al., Crypto 2023), but offers significantly smaller proofs than the latter.
The scheme is obtained by combining two ingredients:
1. Building on the code-switching technique (Ron-Zewi and Rothblum, JACM 2024), we show how to compose any error-correcting code together with an interactive oracle proof of proximity (IOPP) underlying existing MLPCS constructions, into a new MLPCS. The new MLPCS inherits its proving time from the code's encoding time, and its verification complexity from the underlying MLPCS. The composition is distinctive in that it is done purely on the information-theoretic side.
2. We apply the above methodology using an extremely efficient error-correcting code known as the Repeat-Accumulate-Accumulate (RAA) code. We give new asymptotic and concrete bounds, which demonstrate that (for sufficiently large message sizes) this code has a better encoding time vs. distance tradeoff than previous linear-time encodable codes that were considered in the literature.
The scheme is obtained by combining two ingredients:
1. Building on the code-switching technique (Ron-Zewi and Rothblum, JACM 2024), we show how to compose any error-correcting code together with an interactive oracle proof of proximity (IOPP) underlying existing MLPCS constructions, into a new MLPCS. The new MLPCS inherits its proving time from the code's encoding time, and its verification complexity from the underlying MLPCS. The composition is distinctive in that it is done purely on the information-theoretic side.
2. We apply the above methodology using an extremely efficient error-correcting code known as the Repeat-Accumulate-Accumulate (RAA) code. We give new asymptotic and concrete bounds, which demonstrate that (for sufficiently large message sizes) this code has a better encoding time vs. distance tradeoff than previous linear-time encodable codes that were considered in the literature.
Zhengan Huang, Junzuo Lai, Gongxian Zeng, Jian Weng
ePrint Report
Many messaging platforms have integrated end-to-end (E2E) encryption into their services. This widespread adoption of E2E encryption has triggered a technical tension between user privacy and illegal content moderation. The existing solutions either support only unframeability or deniability, or they are prone to abuse (the moderator can perform content moderation for all messages, whether illegal or not), or they lack mechanisms for retrospective content moderation.
To address the above issues, we introduce a new primitive called \emph{mild asymmetric message franking} (MAMF) to establish illegal-messages-only and retrospective content moderation for messaging systems, supporting unframeability and deniability simultaneously. We provide a framework to construct MAMF, leveraging two new building blocks, which might be of independent interest.
To address the above issues, we introduce a new primitive called \emph{mild asymmetric message franking} (MAMF) to establish illegal-messages-only and retrospective content moderation for messaging systems, supporting unframeability and deniability simultaneously. We provide a framework to construct MAMF, leveraging two new building blocks, which might be of independent interest.
10 October 2024
Ph.D. Position on Post-Quantum Crypto-Biometrics with Hardware Security for Digital Identity Wallets
University of Seville (Microelectronics Institute of Seville), Spain
Job Posting
Related projects:
HighLoAwallet: Crypto-biometric techniques and hardware-enabled solutions for self-sovereign identity wallets with high level of assurance.
Hard-ID-wallet: Proof of concept of hardware security solutions required by the cryptography and biometrics of digital identity wallet.
VIPS-ID: Verifiable, Private, Distributed, and Secure Identification of People and Things.
LICORICE: reLIable and sCalable tOols foR self-sovereIgn identity and data proteCtion framework.
Period: 4 years, to apply until 20 October 2024, to start on December 2024.
If interested, please submit your application (CV and motivations) or contact to:
lumi@us.es (Prof. Iluminada Baturone) and arjona@imse-cnm.csic.es (Prof. Rosario Arjona)
Gross salary: 23.000 € (first year), 24.100 € (second and third years). The amount will be increased for the fourth year. And economic
support for equipments, training programs, publications, conferences and research stays.
Key words: Cybersecurity, electronic transactions, digital identity, digital identity wallets, self-sovereign identities, privacy, crypto-
biometrics, PUFs, hardware security, post-quantum cryptography, trusted execution, and mobile devices.
Objectives: Design of post-quantum crypto-biometric and hardware-enabled solutions to manage people identities with high level of
assurance in the context of digital identity wallets. Technology transfer and research publications.
Profile: University Degree with at least 300 ECTS credits or Master in the area of Physics, Mathematics, Computer Science,
Electronics, Telecommunications, Cybersecurity or similar. Strong interest in Cybersecurity from a hardware and crypto-biometric
point of view. Programming skills. Good knowledge of mathematics (for cryptography), and signal and image processing (for
biometrics). High-level in English. Self-motivation and commitment to do a Ph.D.
Closing date for applications:
Contact: If interested, please submit your application (CV and motivations) or contact to: lumi@us.es (Prof. Iluminada Baturone) and arjona@imse-cnm.csic.es (Prof. Rosario Arjona)
NUS-Singapore and the University of Sheffield, UK
Job Posting
We are offering fully funded Ph.D opportunities at NUS-Singapore and the University of Sheffield, UK.
The candidates will have opportunities to work in both Singapore and Sheffield (UK).
Requirements for Ph.D. Position :
•Completed Master’s degree (or equivalent) at a top university in information security, computer science, applied mathematics, electrical engineering, or a similar area.
• Research experience (such as publishing papers as a first author in reputable venues)
• Self-motivated, reliable, creative, can work in a team and want to do excellent research on challenging scientific problems with practical relevance.
How to apply? Please send me your CV with detailed information,
please send three of your best papers.
Contact: Dr Prosanta Gope (p.gope@sheffield.ac.uk)
Closing date for applications:
Contact: Dr Prosanta Gope (p.gope@sheffield.ac.uk)
09 October 2024
Jinrong Chen, Yi Wang, Rongmao Chen, Xinyi Huang, Wei Peng
ePrint Report
In this work, we provide new, tighter proofs for the $T_{RH}$-transformation by Jiang et al. (ASIACRYPT 2023), which converts OW-CPA secure PKEs into KEMs with IND-1CCA security, a variant of typical IND-CCA security where only a single decapsulation query is allowed. Such KEMs are efficient and have been shown sufficient for real-world applications by Huguenin-Dumittan and Vaudenay at EUROCRYPT 2022. We reprove Jiang et al.'s $T_{RH}$-transformation in both the random oracle model (ROM) and the quantum random oracle model (QROM), for the case where the underlying PKE is rigid deterministic. In both ROM and QROM models, our reductions achieve security loss factors of $\mathcal{O}(1)$, significantly improving Jiang et al.'s results which have security loss factors of $\mathcal{O}(q)$ in the ROM and $\mathcal{O}(q^2)$ in the QROM respectively. Notably, central to our tight QROM reduction is a new tool called ''reprogram-after-measure'', which overcomes the reduction loss posed by oracle reprogramming in QROM proofs. This technique may be of independent interest and useful for achieving tight QROM proofs for other post-quantum cryptographic schemes. We remark that our results also improve the reduction tightness of the $T_{H}$-transformation (which also converts PKEs to KEMs) by Huguenin-Dumittan and Vaudenay (EUROCRYPT 2022), as Jiang et al. provided a tight reduction from $T_H$-transformation to $T_{RH}$-transformation (ASIACRYPT 2023).
Abhiram Kothapalli, Srinath Setty
ePrint Report
We introduce NeutronNova, a new folding scheme for the zero-check relation: an instance-witness pair is in the zero-check relation if a corresponding multivariate polynomial evaluates to zero for all inputs over a suitable Boolean hypercube. The folding scheme is a two-round protocol, and it internally invokes a \emph{single} round of the sum-check protocol. The folding scheme is more efficient than prior state-of-the-art schemes and directly benefits from recent improvements to the sum-check prover. The prover’s work is the cost to commit to a witness and field operations in a single round of the sum-check protocol. So, if the witness contains "small" field elements, the prover only commits to "small" field elements. The verifier’s work is a constant number of group scalar multiplications, field operations, and hash computations. Moreover, the folding scheme generalizes to fold multiple instances at once and requires only $\log{n}$ rounds of the sum-check protocol, where $n$ is the number of instances folded.
As a corollary, we provide a folding scheme for any relation R for which there is a reduction of knowledge (RoK) from $\mathcal{R}$ to one or more instance-witness pairs in the zero-check relation. Such RoKs appear implicitly in prior lookup arguments (e.g., Lasso) and high-performance zkVMs for RISC-V (e.g., Jolt). We formalize these RoKs for several relations including indexed lookups, grand products, and CCS (which generalizes Plonkish, AIR, and R1CS). These are simple and constant round RoKs that leverage interaction to perform randomized checks on committed witness elements. Instead of proving these resulting zero-check instances as is done in prior proof systems such as Jolt, NeutronNova provides the more efficient option of continual folding of zero-check instances into a single running instance.
As a corollary, we provide a folding scheme for any relation R for which there is a reduction of knowledge (RoK) from $\mathcal{R}$ to one or more instance-witness pairs in the zero-check relation. Such RoKs appear implicitly in prior lookup arguments (e.g., Lasso) and high-performance zkVMs for RISC-V (e.g., Jolt). We formalize these RoKs for several relations including indexed lookups, grand products, and CCS (which generalizes Plonkish, AIR, and R1CS). These are simple and constant round RoKs that leverage interaction to perform randomized checks on committed witness elements. Instead of proving these resulting zero-check instances as is done in prior proof systems such as Jolt, NeutronNova provides the more efficient option of continual folding of zero-check instances into a single running instance.
Arasu Arun, Srinath Setty
ePrint Report
Folding schemes enable prover-efficient incrementally verifiable computation (IVC), where a proof is generated step-by-step, resulting in a space-efficient prover that naturally supports continuations. These attributes make them a promising choice for proving long-running machine executions (popularly, "zkVMs"). A major problem is designing an efficient read-write memory. Another challenge is overheads incurred by unused machine instructions when incrementally proving a program execution step.
Nebula addresses these with new techniques that can paired with modern folding schemes. First, we introduce commitment-carrying IVC, where a proof carries an incremental commitment to the prover’s non-deterministic advice provided at different steps. Second, we show how this unlocks efficient read-write memory (which implies indexed lookups) with a cost-profile identical to that of non-recursive arguments. Third, we provide a new universal "switchboard" circuit construction that combines circuits of different instructions such that one can "turn off" uninvoked circuit elements and constraints, offering a new way to achieve pay-per-use prover costs.
We implement a prototype of a Nebula-based zkVM for the Ethereum virtual machine (EVM). We find that Nebula’s techniques qualitatively provide a $30\times$ smaller constraint system to represent the EVM over standard memory-checking techniques, and lead to over $260\times$ faster proof generation for the standard ERC20 token transfer transaction.
Nebula addresses these with new techniques that can paired with modern folding schemes. First, we introduce commitment-carrying IVC, where a proof carries an incremental commitment to the prover’s non-deterministic advice provided at different steps. Second, we show how this unlocks efficient read-write memory (which implies indexed lookups) with a cost-profile identical to that of non-recursive arguments. Third, we provide a new universal "switchboard" circuit construction that combines circuits of different instructions such that one can "turn off" uninvoked circuit elements and constraints, offering a new way to achieve pay-per-use prover costs.
We implement a prototype of a Nebula-based zkVM for the Ethereum virtual machine (EVM). We find that Nebula’s techniques qualitatively provide a $30\times$ smaller constraint system to represent the EVM over standard memory-checking techniques, and lead to over $260\times$ faster proof generation for the standard ERC20 token transfer transaction.
Changcun Wang, Zhaopeng Dai
ePrint Report
Multiple Matrix congruential generators is an important class of pseudorandom number generators. This paper studies the predictability of a class of truncated multiple matrix congruential generators with unknown parameters. Given a few truncated digits of high-order bits or low-order bits output by a multiple matrix congruential generator, we give a method based on lattice reduction to recover the parameters and the initial state of the generator.
Jiaqi Cheng, Rishab Goyal
ePrint Report
We design a generic compiler to boost any non-trivial succinct non-interactive argument of knowledge (SNARK) to full succinctness. Our results come in two flavors:
For any constant $\epsilon > 0$, any SNARK with proof size $|\pi| < \frac{|\omega|}{\lambda^\epsilon} + \mathsf{poly}(\lambda, |x|)$ can be upgraded to a fully succinct SNARK, where all system parameters (such as proof/CRS sizes and setup/verifier run-times) grow as fixed polynomials in $\lambda$, independent of witness size.
Under an additional assumption that the underlying SNARK has as an \emph{efficient} knowledge extractor, we further improve our result to upgrade any non-trivial SNARK. For example, we show how to design fully succinct SNARKs from SNARKs with proofs of length $|\omega| - \Omega(\lambda)$, or $\frac{|\omega|}{1 + \epsilon} + \mathsf{poly}(\lambda, |x|)$, any constant $\epsilon > 0$.
Our result reduces the long-standing challenge of designing fully succinct SNARKs to designing \emph{arguments of knowledge that beat the trivial construction}. It also establishes optimality of rate-1 arguments of knowledge (such as NIZKs [Gentry-Groth-Ishai-Peikert-Sahai-Smith; JoC'15] and BARGs [Devadas-Goyal-Kalai-Vaikuntanathan, Paneth-Pass; FOCS'22]), and suggests any further improvement is tantamount to designing fully succinct SNARKs, thus requires bypassing established black-box barriers [Gentry-Wichs; STOC'11].
For any constant $\epsilon > 0$, any SNARK with proof size $|\pi| < \frac{|\omega|}{\lambda^\epsilon} + \mathsf{poly}(\lambda, |x|)$ can be upgraded to a fully succinct SNARK, where all system parameters (such as proof/CRS sizes and setup/verifier run-times) grow as fixed polynomials in $\lambda$, independent of witness size.
Under an additional assumption that the underlying SNARK has as an \emph{efficient} knowledge extractor, we further improve our result to upgrade any non-trivial SNARK. For example, we show how to design fully succinct SNARKs from SNARKs with proofs of length $|\omega| - \Omega(\lambda)$, or $\frac{|\omega|}{1 + \epsilon} + \mathsf{poly}(\lambda, |x|)$, any constant $\epsilon > 0$.
Our result reduces the long-standing challenge of designing fully succinct SNARKs to designing \emph{arguments of knowledge that beat the trivial construction}. It also establishes optimality of rate-1 arguments of knowledge (such as NIZKs [Gentry-Groth-Ishai-Peikert-Sahai-Smith; JoC'15] and BARGs [Devadas-Goyal-Kalai-Vaikuntanathan, Paneth-Pass; FOCS'22]), and suggests any further improvement is tantamount to designing fully succinct SNARKs, thus requires bypassing established black-box barriers [Gentry-Wichs; STOC'11].
Leah Namisa Rosenbloom
ePrint Report
This paper extends the dialogue of "The Moral Character of Cryptographic Work" (Rogaway, 2015) and "Crypto for the People" (Kamara, 2020) by examining the relationship between cryptography and collective power. In particular, it considers cryptography in the context of grassroots organizing—a process by which marginalized people build collective power toward effecting systemic change—and illustrates the ways in which cryptography has both helped and hindered organizing efforts. Based on the synthesis of dozens of qualitative studies, scholarly critiques, and historical artifacts, this work introduces a paradigm shift for cryptographic protocol design—general principles and recommendations for building cryptography to address the lived needs and experiences of marginalized people. Finally, it calls for abolition cryptography: cryptographic theories and practices which dismantle harmful systems and replace them with systems that sustain human lives and livelihoods.
Daniel Collins, Yuval Efron, Jovan Komatovic
ePrint Report
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of $t
We further the study of crypto-agnostic Byzantine agreement among $n$ parties that answers this question in the negative. Specifically, let $t_s$ and $t_i$ denote two parameters such that (1) $2t_i + t_s < n$, and (2) $t_i \leq t_s < n/2$. Crypto-agnostic Byzantine agreement ensures agreement among honest parties if (1) the adversary is computationally bounded and corrupts up to $t_s$ parties, or (2) the adversary is computationally unbounded and corrupts up to $t_i$ parties, and is moreover given all secrets of all parties established during the setup. We propose a compiler that transforms any pair of resilience-optimal Byzantine agreement protocols in the authenticated and information-theoretic setting into one that is crypto-agnostic. Our compiler has several attractive qualities, including using only $O(\lambda n^2)$ bits over the two underlying Byzantine agreement protocols, and preserving round and communication complexity in the authenticated setting. In particular, our results improve the state-of-the-art in bit complexity by at least two factors of $n$ and provide either early stopping (deterministic) or expected constant round complexity (randomized). We therefore provide fallback security for authenticated Byzantine agreement for free for $t_i \leq n/4$.
We further the study of crypto-agnostic Byzantine agreement among $n$ parties that answers this question in the negative. Specifically, let $t_s$ and $t_i$ denote two parameters such that (1) $2t_i + t_s < n$, and (2) $t_i \leq t_s < n/2$. Crypto-agnostic Byzantine agreement ensures agreement among honest parties if (1) the adversary is computationally bounded and corrupts up to $t_s$ parties, or (2) the adversary is computationally unbounded and corrupts up to $t_i$ parties, and is moreover given all secrets of all parties established during the setup. We propose a compiler that transforms any pair of resilience-optimal Byzantine agreement protocols in the authenticated and information-theoretic setting into one that is crypto-agnostic. Our compiler has several attractive qualities, including using only $O(\lambda n^2)$ bits over the two underlying Byzantine agreement protocols, and preserving round and communication complexity in the authenticated setting. In particular, our results improve the state-of-the-art in bit complexity by at least two factors of $n$ and provide either early stopping (deterministic) or expected constant round complexity (randomized). We therefore provide fallback security for authenticated Byzantine agreement for free for $t_i \leq n/4$.
Mingxun Zhou, Elaine Shi, Giulia Fanti
ePrint Report
We propose a new private Approximate Nearest Neighbor (ANN) search scheme named Pacmann that allows a client to perform ANN search in a vector database without revealing the query vector to the server. Unlike prior constructions that run encrypted search on the server side, Pacmann carefully offloads limited computation and storage to the client, no longer requiring computationally-intensive cryptographic techniques. Specifically, clients run a graph-based ANN search, where in each hop on the graph, the client privately retrieves local graph information from the server. To make this efficient, we combine two ideas: (1) we adapt a leading graph-based ANN search algorithm to be compatible with private information retrieval (PIR) for subgraph retrieval; (2) we use a recent class of PIR schemes that trade offline preprocessing for online computational efficiency. Pacmann achieves significantly better search quality than the state-of-the-art private ANN search schemes, showing up to 2.5$\times$ better search accuracy on real-world datasets than prior work and reaching 90\% quality of a state-of-the-art non-private ANN algorithm. Moreover on large datasets with up to 100 million vectors, Pacmann shows better scalability than prior private ANN schemes
with up to 2.6$\times$ reduction in computation time and 1.3$\times$ reduction in overall latency.
Bar Alon, Amos Beimel, Or Lasri
ePrint Report
We consider 3 related cryptographic primitives, private information retrieval (PIR) protocols, conditional disclosure of secrets (CDS) protocols, and secret-sharing schemes; these primitives have many applications in cryptography. We study these primitives requiring information-theoretic security. The complexity of these primitives has been dramatically improved in the last few years are they are closely related, i.e., the the 2-server PIR protocol of Dvir and Gopi (J. ACM 2016) was transformed to construct the CDS protocols of Liu, Vaikuntanathan, and Wee (CRYPTO 2017, Eurocrypt 2018) and these CDS protocols are the main ingredient in the construction of the best known secret-sharing schemes.
To date, the messages size required in PIR and CDS protocols and the share size required in secret-sharing schemes is not understood and there are big gaps between their upper bounds and lower bounds. The goal of this paper is to try to better understand the upper bounds by simplifying current constructions and improving their complexity.
We obtain the following two independent results:
- We simplify, abstract, and generalize the 2-server PIR protocol of
Dvir and Gopi (J. ACM 2016) and the 2-server and multi-server
CDS protocols of Liu et al. (CRYPTO 2017, Eurocrypt 2018) and
Beimel, Farr`as, and Lasri (TCC 2023). This is done by considering
a new variant of matching vectors and by using a general share
conversion. In addition to simplifying previous protocols, our
protocols can use matching vectors over any $m$ that is product
of two distinct primes.
Our construction does not improve the communication
complexity of PIR and CDS protocols; however, construction of
better matching vectors over any $m$ that is product of
two distinct primes will improve their communication complexity.
- In many applications of secret-sharing schemes it is important that
the scheme is linear, e.g., by using the fact that parties can locally
add shares of two secrets and obtain shares of the sum of the
secrets. We provide a construction of linear secret-sharing
schemes for $n$-party access structures with improved share size
of $2^{0.7563n}$. Previously, the best share size for linear secret-
sharing schemes was $2^{0.7576n}$ and it is known that for most
$n$-party access structures the shares size is at least $2^{0.5n}$.
This results is achieved by a reduction to unbalanced CDS
protocols (compared to balanced CDS protocols in previous
constructions).
Sulaiman Alhussaini, Serge˘ı Sergeev
ePrint Report
Recently, a more efficient attack on the initial tropical Stickel protocol has been proposed, different from the previously known Kotov-Ushakov attack, yet equally guaranteed to succeed. Given that the Stickel protocol can be implemented in various ways, such as utilizing platforms beyond the tropical semiring or employing alternative commutative matrix ``classes'' instead of polynomials, we firstly explore the generalizability of this new attack across different implementations of the Stickel protocol. We then conduct a comprehensive security analysis of a tropical variant that successfully resists this new attack, namely the Stickel protocol based on Linde-de la Puente (LdlP) matrices. Additionally, we extend the concept of LdlP matrices beyond the tropical semiring, generalizing it to a broader class of semirings.
Sam Gunn, Xuandong Zhao, Dawn Song
ePrint Report
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness.
We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
Jonathan Katz, Ben Sela
ePrint Report
Certified deletion, an inherently quantum capability, allows a party holding a quantum state to prove that they have deleted the information contained in that state. Bartusek and Raizes recently studied certified deletion in the context of secret sharing schemes, and showed constructions with privately verifiable proofs of deletion that can be verified only by the dealer who generated the shares. We give two constructions of secret sharing schemes with publicly verifiable certified deletion. Our first construction is based on the post-quantum security of the LWE problem, and each share requires a number of qubits that is linear in the size of an underlying classical secret sharing scheme for the same set of authorized parties. Our second construction is based on a more general assumption—the existence of post quantum one-way functions— but requires an asymptotically larger number of qubits relative to the share size of the underlying classical scheme.
Yanpei Guo, Xuanming Liu, Kexi Huang, Wenjie Qu, Tianyang Tao, Jiaheng Zhang
ePrint Report
This work presents Deepfold, a novel multilinear polynomial commitment scheme (PCS) based on Reed-Solomon code that offers optimal prover time and a more concise proof size. For the first time, Deepfold adapts the FRI-based multilinear PCS to the list decoding radius setting, requiring significantly fewer query repetitions and thereby achieving a 3× reduction in proof size compared to Basefold (Crypto'24), while preserving its advantages in prover time. Compared with PolyFRIM (USENIX Security'24), Deepfold achieves a 2× improvement in prover time, verifier time, and proof size. Another contribution of this work is a batch evaluation scheme, which enables the FRI-based multilinear PCS to handle polynomials encoded from inputs of arbitrary length without additional padding overhead.
Our scheme has broad applications in zk-SNARKs, since PCS is a key component in modern zk-SNARK constructions. For example, when replacing the PCS component of Virgo (S&P'20) with Deepfold, our scheme achieves a 2.5× faster prover time when proving the knowledge of a Merkle tree with 256 leaves, while maintaining the similar proof size. When replacing the PCS component of HyperPlonk (Eurocrypt'23) with Deepfold, our scheme has about 3.6× faster prover time. Additionally, when applying our arbitrary length input commitment to verifiable matrix multiplications for matrices of size 1200×768 and 768×2304, which are actual use cases in GPT-2 model, the performance showcases a 2.4× reduction in prover time compared to previous approaches.
Our scheme has broad applications in zk-SNARKs, since PCS is a key component in modern zk-SNARK constructions. For example, when replacing the PCS component of Virgo (S&P'20) with Deepfold, our scheme achieves a 2.5× faster prover time when proving the knowledge of a Merkle tree with 256 leaves, while maintaining the similar proof size. When replacing the PCS component of HyperPlonk (Eurocrypt'23) with Deepfold, our scheme has about 3.6× faster prover time. Additionally, when applying our arbitrary length input commitment to verifiable matrix multiplications for matrices of size 1200×768 and 768×2304, which are actual use cases in GPT-2 model, the performance showcases a 2.4× reduction in prover time compared to previous approaches.