International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

16 February 2024

Michele Battagliola, Andrea Flamini
ePrint Report ePrint Report
The recent surge of distribute technologies caused an increasing interest towards threshold signature protocols, that peaked with the recent NIST First Call for Multi-Party Threshold Schemes.

Since its introduction, the Fiat-Shamir Transform has been the most popular way to design standard digital signature schemes. In this work, we translate the Fiat-Shamir Transform into a multi-party setting, building a framework that seeks to be an alternative, easier, way to design threshold digital signatures. We do that by introducing the concept of threshold identification scheme and threshold sigma protocol, and showing necessary and sufficient conditions to prove the security of the threshold signature schemes derived from them.

Lastly, we show a practical application of our framework providing an alternative security proof for Sparkle, a recent threshold Schnorr signature. In particular, we consider the threshold identification scheme underlying Sparkle and prove the security of the signature derived from it.

We show that using our framework the effort required to prove the security of threshold signatures might be drastically lowered. In fact, instead of reducing explicitly its security to the security of a hard problem, it is enough to prove some properties of the underlying threshold sigma protocol and threshold identification scheme. Then, by applying the results that we prove in this paper it is guaranteed that the derived threshold signature is secure.
Expand
Charlotte Lefevre
ePrint Report ePrint Report
This note examines a nuance in the methods employed for counting the adversarial online complexity in the security proofs of duplex-based modes, with a focus on authenticated encryption. A recent study by Gilbert et al., reveals an attack on a broad class of duplex-based authenticated encryption modes. In particular, their approach to quantifying the adversarial online complexity, which capture realistic attack scenarios, includes certain queries in the count which are not in the security proofs. This note analyzes these differences and concludes that the attack of Gilbert et al, for certain parameter choices, matches the security bound.
Expand
Elijah Pelofske
ePrint Report ePrint Report
Quantum devices offer a highly useful function - that is generating random numbers in a non-deterministic way since the measurement of a quantum state is not deterministic. This means that quantum devices can be constructed that generate qubits in a uniform superposition and then measure the state of those qubits. If the preparation of the qubits in a uniform superposition is unbiased, then quantum computers can be used to create high entropy, secure random numbers. Typically, preparing and measuring such quantum systems requires more time compared to classical pseudo random number generators (PRNGs) which are inherently deterministic algorithms. Therefore, the typical use of quantum random number generators (QRNGs) is to provide high entropy secure seeds for PRNGs. Quantum annealing (QA) is a type of analog quantum computation that is a relaxed form of adiabatic quantum computation and uses quantum fluctuations in order to search for ground state solutions of a programmable Ising model. Here we present extensive experimental random number results from a D-Wave 2000Q quantum annealer, totaling over 20 billion bits of QA measurements, which is significantly larger than previous D-Wave QA random number generator studies. Current quantum annealers are susceptible to noise from environmental sources and calibration errors, and are not in general unbiased samplers. Therefore, it is of interest to quantify whether noisy quantum annealers can effectively function as an unbiased QRNG. The amount of data that was collected from the quantum annealer allows a comprehensive analysis of the random bits to be performed using the NIST SP 800-22 Rev 1a testsuite, as well as min-entropy estimates from NIST SP 800-90B. The randomness tests show that the generated random bits from the D-Wave 2000Q are biased, and not unpredictable random bit sequences. With no server-side sampling post-processing, the $1$ microsecond annealing time measurements had a min-entropy of $0.824$.
Expand
Tao Zhang, Shang Shi, Md Habibur Rahman, Nitin Varshney, Akshay Kulkarni, Farimah Farahmandi, Mark Tehranipoor
ePrint Report ePrint Report
Battery-operated applications have been ubiquitous all over the world ranging from power-intensive electric cars down to low-power smart terminals and embedded devices. Meanwhile, serious incidents around batteries such as swelling, fire, and explosion have been witnessed, which resulted in horribly huge financial and even life loss. People used to attribute such aftermaths to unintentional design mistakes or insufficient quality inspection of original battery manufacturers. However, this is not fair anymore today given the convoluted battery supply chain and the extended cyber-physical attack surface of battery management systems (BMS). In this paper, we will focus on the authenticity and assurance of prevalent (Li-ion) battery instances. We look into battery authenticity by modeling the contemporary battery supply chain and discussing practical concerns such as rewrapping and recycling in-depth at each stage. As for battery assurance, we consider emerging attack vectors that can compromise the confidentiality, integrity, and availability of the microelectronic BMS. Besides, real-world attack examples are highlighted to reflect the capabilities of advanced adversaries. Moreover, promising countermeasures regarding the detection and avoidance of threats on both battery authenticity and assurance are presented, such that researchers will gain insights into how the problem could be addressed/alleviated. We also provide our perspectives on the vulnerabilities of battery systems and their consequent impacts as well as our point of view on potential countermeasure techniques.
Expand

13 February 2024

Warszawa, Polska, 20 June - 21 June 2024
Event Calendar Event Calendar
Event date: 20 June to 21 June 2024
Submission deadline: 8 April 2024
Notification: 6 May 2024
Expand
IFT | Logos | Vac
Job Posting Job Posting
Vac builds public good protocols for the decentralized web. We do applied research based on which we build protocols, libraries and publications.

This role is within the Vac Nescience unit, which develops Nescience A zkVM leveraging hiding properties.

The role

In this role, you will be responsible implementing and analysing components of zero knowledge argument systems and architectures for private computation. The ideal candidate should be well-versed in zero-knowledge circuits written in Rust, with the ability to adapt to evolving research needs.

Your responsibilities will include implementing zero-knowledge circuits and writing comprehensive specifications. Additionally, your role will involve measuring the performance of circuits, while also possessing the skills to debug and optimize as needed.

Join us in pushing the boundaries of private computation technology and contribute to groundbreaking advancements in the field of zkVMs.

Closing date for applications:

Contact: Maya

More information: https://grnh.se/0ee4300f1us

Expand
SandboxAQ
Job Posting Job Posting

We have postdoc and PhD residency positions available at SandboxAQ [1]. We seek people interested in doing research in the areas of post-quantum cryptography, privacy, and machine learning applied to cybersecurity. The positions are remote, but allow for travel to collaborate with team members. The postdoc residencies are initially for two years, but with the option to extend it to up to three years, on mutual agreement. PhD residencies are up to one year.

We are open to strong candidates that reinforce existing expertise of the team as well as candidates extending our expertise.

We are committed to creating an inclusive culture where we have zero tolerance for discrimination. We invest in our employees' personal and professional growth.

Learn more about what we’ve been doing so far by checking out our publications page [2] or the individual DBLP pages of our permanent researchers listed below for each of the teams associated with these residencies.

[1] www.sandboxaq.com [2] pub.sandboxaq.com

Rolling deadline. More information: https://www.sandboxaq.com/careers.

PQC members’ information:
  • Carlos Aguilar Melchor: https://dblp.org/pid/71/4606.html
  • Martin Albrecht: https://dblp.org/pid/92/7397.html
  • Nina Bindel: https://dblp.org/pid/167/3021.html
  • James Howe: https://dblp.org/pid/163/8680.html
  • Andreas Hülsing: https://dblp.org/pid/27/1744.html
Privacy members’ information:
  • Nicolas Gama: https://dblp.org/pid/49/4575.html
  • Sandra Guasch Castelló: https://dblp.org/pid/86/8292.html
ML for Cybersecurity contacts:
  • Raphael Labaca-Castro: raphael.labaca@sandboxaq.com
  • Parth Mishra: parth.mishra@sandboxaq.com

Closing date for applications:

Contact:

  • PQC: martin.albrecht@sandboxaq.com and james.howe@sandboxaq.com
  • Privacy: nicolas.gama@sandboxaq.com and sandra.guasch@sandboxaq.com
  • ML: raphael.labaca@sandboxaq.com and parth.mishra@sandboxaq.com

More information: https://www.sandboxaq.com/careers

Expand
University of Wollongong, Australia
Job Posting Job Posting
We are looking for a self-motivated postdoc in key-evolving cryptography and blockchain supported under ARC Discovery project. The project is planned to start in July 2024 and for four years. The candidate is required to have a PhD qualification in relevant research fields in cryptography, cybersecurity, computer science or blockchain. Please send your CV and related documents to the contact below.

Closing date for applications:

Contact: Dr Yannan Li (first_name@uow.edu.au)

Expand
University of Wollongong, Australia
Job Posting Job Posting
We are looking for self-motivated students in blockchain, especially in blockchain regulation. The position is planned to start in July 2024 and for a 3-year term (can be extended). The student requires a background in computer science or cryptography and holds Master's degree in computer science or equivalent, excellent English, communication, and teamwork skills. Experience in research and knowledge of zero-knowledge proofs will be a big plus. If you are interested in this position, please don't hesitate to send your CV and transcript to the contact below.

Closing date for applications:

Contact: Dr Yannan Li (first_name@uow.edu.au)

Expand

12 February 2024

Dionysis Zindros, Apostolos Tzinas, David Tse
ePrint Report ePrint Report
We observe that most fixed-party distributed protocols can be rewritten by replacing a party with a ledger (such as a blockchain system) and the authenticated channel communication between parties with cross-chain relayers. This transform is useful because blockchain systems are always online and have battle-tested security assumptions. We provide a definitional framework that captures this analogy. We model the transform formally, and posit and prove a generic metatheorem that allows translating all theorems from the party setting into theorems in the emulated setting, while preserving analogies between party honesty and ledger security. In the heart of our proof lies a reduction-based simulation argument. As an example, our metatheorem can be used to construct a consensus protocol on top of other blockchains, creating a reliable rollup that assumes only the majority of the underlying layer-1s are secure.
Expand
Konstantinos Brazitikos, Vassilis Zikas
ePrint Report ePrint Report
Typical results in multi-party computation (in short, MPC) capture faulty parties by assuming a threshold adversary corrupting parties actively and/or fail-corrupting. These corruption types are, however, inadequate for capturing correct parties that might suffer temporary network failures and/or localized faults - these are particularly relevant for MPC over large, global scale networks. Omission faults and general adversary structures have been proposed as more suitable alternatives. However, to date, there is no characterization of the feasibility landscape combining the above ramifications of fault types and patterns. In this work we provide a tight characterization of feasibility of MPC in the presence of general adversaries - characterized by an adversary structure - that combine omission and active corruption. To this front we first provide a tight characterization of feasibility for Byzantine agreement (BA), a key tool in MPC protocols - this BA result can be of its own separate significance. Subsequently, we demonstrate that the common techniques employed in the threshold MPC literature to deal with omission corruptions do not work in the general adversary setting, not even for proving bounds that would appear straightforward, e.g, sufficiency of the well known $Q^3$ condition on omission-only general adversaries. Nevertheless we provide a new protocol that implements general adversary MPC under a surprisingly complex, yet tight as we prove, bound. As a contribution of independent interest, our work puts forth, for the first time, a formal treatment of general-adversary MPC with (active and) omission corruptions in Canetti's universal composition framework.
Expand
Samuel Lavery
ePrint Report ePrint Report
In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed lattice problems in a nested fashion, the dimensionality and overall complexity of the lattice structure is increased. This linked lattice framework obscures internal structure and mitigates cryptanalysis by applying a novel ’noisy roots’ technique. By relaxing the need for specifically correct nth ω roots in a given field, we apply offset values to create a framework of consisting of a set of uniquely transforming but arithmetically compatible NTTs. We provide specific parameters for conjectured NIST level V security. Communication costs are extremely low at 288-bytes per public key and 144-bytes per cipher-text or digital signature. Example protocols for key agreement, secure data exchange, additive accumulation, and digital signatures are provided. Peer review is in preliminary stages at time of dissemination. Claims within have not undergone rigorous validation and likely contain inaccuracies, errors, flaws or incomplete analysis. Contents may see significant modification through later iterations.
Expand
Prabhanjan Ananth, Gilad Asharov, Vipul Goyal, Hadar Kaner, Pratik Soni, Brent Waters
ePrint Report ePrint Report
Trusted setup is commonly used for non-interactive proof and argument systems. However, there is no guarantee that the setup parameters in these systems are generated in a trustworthy manner. Building upon previous works, we conduct a systematic study of non-interactive zero-knowledge arguments in the common reference string model where the authority running the trusted setup might be corrupted. We explore both zero-knowledge and soundness properties in this setting. 

- We consider a new notion of NIZK called subversion advice-ZK NIZK that strengthens the notion of zero-knowledge with malicious authority security considered by Ananth, Asharov, Dahari and Goyal (EUROCRYPT'21), and present a construction of a subversion advice-ZK NIZK from the sub-exponential hardness of learning with errors.

- We introduce a new notion that strengthens the traditional definition of soundness, called accountable soundness, and present generic compilers that lift any NIZK for interesting languages in NP to additionally achieve accountable soundness.

- Finally, we combine our results for both subversion advice-ZK and accountable soundness to achieve a subversion advice-ZK NIZK that also satisfies accountable soundness. This results in the first NIZK construction that satisfies meaningful notions of both soundness and zero-knowledge even for maliciously chosen CRS.
Expand
Andi Liu, Yizhong Liu, Zhuocheng Pan, Yinuo Li, Jianwei Liu, Yuan Lu
ePrint Report ePrint Report
Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts. As an introduced new transaction type, cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains. Current solutions, however, either prioritize security with assumptions and substantial investments, or focus on reducing overhead and overlooking security considerations.

In this paper, we present Kronos, a generic and efficient sharding blockchain consensus ensuring robust security. At the core of Kronos, we introduce a ''buffer'' mechanism for atomic cross-shard transaction processing. Shard members collectively maintain a buffer to manage cross-shard inputs, ensuring that a transaction is committed only if all inputs are available, and no fund is transferred for invalid requests. While ensuring security including atomicity, Kronos processes transactions with optimal intra-shard communication overhead. A valid cross-shard transaction, involving $x$ input shards and $y$ output shards, is processed with a minimal intra-shard communication overhead factor of $x+y$. Additionally, we propose a reduction for transaction invalidity proof generation to simple and fast multicasting, leading to atomic rejection without executing full-fledged Byzantine fault tolerance (BFT) protocol in optimistic scenarios. Moreover, Kronos adopts a newly designed ''batch'' mechanism, reducing inter-shard message complexity for cross-shard transactions from $\mathcal{O}(\lambda)$ to $\mathcal{O}((m \text{log} m/b)\lambda)$ without sacrificing responsiveness (where $m$ denotes number of shards, $b$ denotes the batch size of intra-shard consensus, and $\lambda$ is security parameter).

Kronos operates without dependence on any time or client honesty assumption, serving as a plug-in sharding blockchain consensus supporting applications in diverse network environments including asynchronous ones. We implement Kronos using two prominent BFT protocols: asynchronous Speeding Dumbo (NDSS'22) and partial synchronous HotStuff (PODC'19). Extensive experiments (over up to $1000$ AWS EC2 nodes across 4 AWS regions) demonstrate Kronos achieving a substantial throughput of $68.6$ktx/sec with $1.7$sec latency. Compared with state-of-the-art solutions, Kronos outperforms in all cases, achieving up to a $42 \times$ improvement in throughput and a $50\%$ reduction in latency when cross-shard transactions dominate the workload.
Expand
ChihYun Chuang, IHung Hsu, TingFang Lee
ePrint Report ePrint Report
In this paper, we propose a novel bi-primality test to determine whether $N=pq$ is the product of two primes on any RSA modulus in which we relaxed the restriction, $p\equiv q \equiv 3 \mbox{ (mod } 4)$, that was assumed in most of current bi-primality tests. Our bi-primality test is generalized from Lucas primality test to the bi-prime case. Our test always accepts when $p$ and $q$ are both prime, and otherwise accepts with probability at most $1/2$. In addition, we also prove that the Boneh-Franklin's bi-primality test accepts composite with probability at most $1/4$ instead of $1/2$, if we add an additional condition $\gcd(N, p+q-1)=1$. Moreover, we design a multiparty protocol against of static semi-honest adversaries in the hybrid model and provide a security proof. We then implement the proposed protocol and run in a single thread on a laptop which turned out with average 224 seconds execution time, given that $N$ is around $2048$-bit.
Expand
Zeyu Liu, Eran Tromer, Yunhao Wang
ePrint Report ePrint Report
Anonymous message delivery, as in privacy-preserving blockchain and private messaging applications, needs to protect recipient metadata: eavesdroppers should not be able to link messages to their recipients. This raises the question: how can untrusted servers assist in delivering the pertinent messages to each recipient, without learning which messages are addressed to whom?

Recent work constructed Oblivious Message Retrieval (OMR) protocols that outsource the message detection and retrieval in a privacy-preserving way, using homomorphic encryption. This exhibits significant costs in computation per message scanned (${\sim}109$ms), as well as in the size of the associated messages (${\sim}1$kB overhead) and public keys (${\sim}132$kB).

This work constructs more efficient OMR schemes, by replacing the LWE-based clue encryption of prior works with a Ring-LWE variant, and utilizing the resulting flexibility to improve several components of the scheme. We thus devise, analyze, and benchmark two protocols:

The first protocol focuses on improving the detector runtime, using a new retrieval circuit that can be homomorphically evaluated more efficiently. Concretely, this construction takes only ${\sim}7.3$ms per message scanned, about $15$x faster than the prior work.

The second protocol focuses on reducing the communication costs, by designing a different homomorphic decryption circuit. While the circuit is less homomorphic-encryption-friendly (than our first construction), it allows the parameter of the Ring-LWE encryption to be set such that both the public key and the message size are greatly reduced. Concretely, the public key size is about $235$x smaller than the prior work, and the message size is roughly $1.6$x smaller. The runtime of this second construction is ${\sim}40.0$ms per message, still more than $2.5$x faster than prior works.
Expand
Andreea Alexandru, Ahmad Al Badawi, Daniele Micciancio, Yuriy Polyakov
ePrint Report ePrint Report
Fully Homomorphic Encryption (FHE) is a powerful tool for performing privacy-preserving analytics over encrypted data. A promising method for FHE over real and complex numbers is approximate homomorphic encryption, instantiated with the Cheon-Kim-Kim-Song (CKKS) scheme. The CKKS scheme enables efficient evaluation for many privacy-preserving machine learning applications. Despite its high efficiency, there is currently a lot of confusion on how to securely instantiate CKKS for a given application, especially after secret-key recovery attacks were proposed by Li and Micciancio (EUROCRYPT'21) for the $IND-CPA^{D}$ setting, i.e., where decryption results are shared with other parties. On the one hand, the generic definition of $IND-CPA^{D}$ is application-agnostic and often requires impractically large parameters. On the other hand, practical CKKS implementations target specific applications and use tighter parameters. A good illustration are the recent secret-key recovery attacks against a CKKS implementation in the OpenFHE library by Guo et al. (USENIX Security'24). We show that these attacks misuse the library by employing different (incompatible) circuits during parameter estimation and run-time computation, yet they do not violate the generic (application-agnostic) $IND-CPA^{D}$ definition.

To address this confusion, we introduce the notion of application-aware homomorphic encryption and devise related security definitions, which correspond more closely to how homomorphic encryption schemes are implemented and used in practice. We then formulate the guidelines for implementing the application-aware homomorphic encryption model to achieve $IND-CPA^{D}$ security for practical applications of CKKS. We also show that our application-aware model can be used for secure, efficient instantiation of exact homomorphic encryption schemes.
Expand
Mark Manulis, Jérôme Nguyen
ePrint Report ePrint Report
We focus on the problem of constructing fully homomorphic encryption (FHE) schemes that achieve some meaningful notion of adaptive chosen-ciphertext security beyond CCA1. Towards this, we propose a new notion, called security against verified chosen-ciphertext attack (vCCA). The idea behind it is to ascertain integrity of the ciphertext by imposing a strong control on the evaluation algorithm. Essentially, we require that a ciphertext obtained by the use of homomorphic evaluation must be "linked" to the original input ciphertexts. We formalize the vCCA notion in two equivalent formulations; the first is in the indistinguishability paradigm, the second follows the non-malleability simulation-based approach, and is a generalization of the targeted malleability introduced by Boneh et al. in 2012.

We strengthen the credibility of our definitions by exploring relations to existing security notions for homomorphic encryption schemes, namely CCA1, RCCA, FuncCPA, CCVA, and HCCA. We prove that vCCA security is the strongest notion known so far, that can be achieved by an FHE scheme; in particular, vCCA is strictly stronger than CCA1.

Finally, we provide a general transformation, that takes any CPA-secure FHE scheme and makes it vCCA-secure. Our transformation first turns an FHE scheme into a CCA2-secure scheme where a part of the ciphertext retains the homomorphic properties and then extends it with a succinct non-interactive argument of knowledge (SNARK) to verifiably control the evaluation algorithm. In fact, we obtain four general variation of this transformation. We handle both the asymmetric and the symmetric key FHE schemes, and for each we give two variations differing in whether the ciphertext integrity can be verified publicly or requires the secret key. We use well-known techniques to achieve CCA security in the first step of our transformation. In the asymmetric case, we use the double encryption paradigm, and in the symmetric case, we use Encrypt-then-MAC techniques. Furthermore, our transformation also gives the first CCA-secure FHE scheme based on bootstrapping techniques.
Expand
Antonio Sanso
ePrint Report ePrint Report
This paper introduces an algorithm to efficiently break the Decisional Diffie-Hellman (DDH) assumption in totally non-maximal imaginary quadratic orders, specifically when $\Delta_1 = 3$, and $f$ is non-prime with knowledge of a single factor. Inspired by Shanks and Dedekind's work on 3-Sylow groups, we generalize their observations to undermine DDH security.
Expand
Karl Kreder, Shreekara Shastry, Apostolos Tzinas, Sriram Vishwanath, Dionysis Zindros
ePrint Report ePrint Report
We propose a modification to the fork choice rule of proof-of-work blockchains. Instead of choosing the heaviest chain, we choose the chain with the most intrinsic work. The intrinsic work of a block is roughly the number of zeroes at the front of its hash. This modification allows us to safely decrease the confirmations required, yielding a $28.5\%$ improvement in confirmation delay or, dually, safely increase the block production rate, yielding a $16.3\%$ improvement in throughput, as compared to the vanilla Bitcoin proof-of-work fork choice rule. Our modification is at the level of the proof-of-work inequality, and thus can be composed with any other methods to improve latency or throughput that have been proposed in the literature. We report the experimental findings by measuring them on a production-grade implementation of our system, whose testnet is already deployed in the wild. Lastly, we formally prove the security of our new protocol in the Bitcoin Backbone model.
Expand
◄ Previous Next ►