12 February 2025
IBM Research Zurich, Switzerland
We have an opening of two PhD positions (one starting September 2025, one starting in 2026) and 1 postdoc (starting September 2025) in the Foundational Cryptography group at IBM Research Zurich. The PhD positions are fully funded for 4 years. The Foundational Cryptography team currently consists of 9 permanent researchers and 7 PhD students.
The research project that the students and postdoc will be working on is about developing post-quantum cryptographic algorithms for human authentication, PIN-based protocols, and the IoT. A background in any of lattice-based cryptography, multi-party computation, or password-authenticated key exchange is helpful but not a requirement. We will explore both theoretical limitations and usable solutions, and depending on the interest of the applicant, either a more foundational or practical direction can be taken.
Applicants need to have a passion for the mathematical analysis of algorithms in general and cryptography in particular. A master's degree in mathematics or computer science and fluently written and spoken English is required.
The IBM Research Zurich lab is located on the beautiful Lake Zurich, close to the Swiss Alps. Research divisions include IT Security, Quantum, AI, and Hybrid Cloud Systems. IBM fosters an inclusive and diverse working environment. Applicants from minorities are particularly encouraged to apply.
Closing date for applications:
Contact: Julia Hesse
11 February 2025
Tim Beyne, Michiel Verbauwhede
Dimitri Koshelev, Antonio Sanso
For instance, some $2$-cycle of pairing-friendly MNT curves (with $-D \approx 100{,}000{,}000$, i.e., $\log_2(-D) \approx 26.5$) is relevant for the result of the current article. The given $2$-cycle was generated at one time by Guillevic to provide $\approx 128$ security bits, hence it was close to application in real-world zk-SNARKs. Another more performant MNT $2$-cycle (with slightly smaller security level, but with much larger $D$) was really employed in the protocol Coda (now Mina) until zero-knowledge proof systems on significantly faster pairing-free (or half-pairing) $2$-cycles were invented. It is also shown in the given work that more lollipop curves, recently proposed by Costello and Korpal to replace MNT ones, are now covered by the GLV technique.
Paco Azevedo-Oliveira, Andersson Calle Viera, Benoît Cogliati, Louis Goubin
Sarisht Wadhwa, Julian Ma, Thomas Thiery, Barnabe Monnot, Luca Zanolini, Fan Zhang, Kartik Nayak
Julien Béguinot, Loïc Masure
Shivam Bhasin, Dirmanto Jap, Marina Krček, Stjepan Picek, Prasanna Ravi
Cruz Barnum, David Heath
This work proposes a framework for reasoning about input-adaptive primitives: adaptive distributional security (ADS). Roughly, an ADS primitive provides security when it is used with inputs drawn from one of two distributions that are themselves hard to distinguish. ADS is useful as a framework for the following reasons: - An ADS definition can often circumvent impossibility results imposed on the corresponding simulation-based definition. This allows us to decrease the online-cost of primitives, albeit by using a weaker notion of security. - With care, one can typically upgrade an ADS-secure object into a simulation-secure object (by increasing cost in the online-phase). - ADS is robust, in the sense that (1) it enables a form of composition and (2) interesting ADS primitives are highly interconnected in terms of which objects imply which other objects. - Many useful ADS-secure objects are plausibly secure from straightforward symmetric-key cryptography.
We start by defining the notion of an ADS encryption (ADE) scheme. A notion of input-adaptive encryption can be easily achieved from RO, and the ADE definition can be understood as capturing the concrete property provided by RO that is sufficient to achieve input-adaptivity. From there, we use ADE to achieve ADS variants of garbled circuits and oblivious transfer, to achieve simulation-secure garbled circuits, oblivious transfer, and two-party computation, and prove interconnectedness of these primitives. In sum, this results in a family of objects with extremely cheap online-cost.
10 February 2025
Madrid, Spain, 3 April - 3 May 2025
Submission deadline: 14 March 2025
Jad Silbak, Daniel Wichs
$\textbf{Selective Security under LWE:}$ Under the learning with errors (LWE) assumption, we construct selectively secure codes over the binary alphabet. For error detection, our codes achieve essentially optimal rate $R \approx 1$ and relative error tolerance $\rho \approx \frac{1}{2}$. For error correction, they can uniquely correct $\rho < 1/4$ relative errors with a rate $R$ that essentially matches that of the best list-decodable codes with error tolerance $\rho$. Both cases provide significant improvements over information-theoretic counterparts. The construction relies on a novel form of 2-input correlation intractable hash functions that we construct from LWE.
$\textbf{Adaptive Security via Crypto Dark Matter:}$ Assuming the exponential security of a natural collision-resistant hash function candidate based on the ``crypto dark matter'' approach of mixing linear functions over different moduli, we construct adaptively secure codes over the binary alphabet, for both error detection and correction. They achieve essentially the same trade-offs between error tolerance $\rho$ and rate $R$ as above, with the caveat that for error-correction they only do so for sufficiently small values of $\rho$.
Madhurima Mukhopadhyay
Nan Wang, Qianhui Wang, Dongxi Liu, Muhammed F. Esgin, Alsharif Abuadbba
We provide the first thorough analysis of a recently developed Any-out-of-N proof in the discrete logarithm (DLOG) setting and the associated RingCT scheme, introduced by ZGSX23 (S&P '23). The proof conceals the number of the secrets to offer greater anonymity than K-out-of-N proofs and uses an efficient "K-Weight" technique for its construction. However, we identify for the first time several limitations of using Any-out-of-N proofs, such as increased transaction sizes, heightened cryptographic complexities and potential security risks. These limitations prevent them from effectively mitigating the longstanding scalability bottleneck.
We then continue to explore the potential of using K-out-of-N proofs to enhance scalability of RingCT schemes. Our primary innovation is a new DLOG-based RingCT signature that integrates a refined "K-Weight"-based K-out-of-N proof and an entirely new tag proof. The latter is the first to efficiently enable the linkability of RingCT signatures derived from the former, effectively resisting double-spending attacks.
Finally, we identify and patch a linkability flaw in ZGSX23's signature. We benchmark our scheme against this patched one to show that our scheme achieves a boost in scalability, marking a promising step forward.
Huck Bennett, Drisana Bhatia, Jean-François Biasse, Medha Durisheti, Lucas LaBuff, Vincenzo Pallozzi Lavorante, Philip Waitkevich
Maher Mamah
Marcel Nageler, Shibam Ghosh, Marlene Jüttler, Maria Eichlseder
Orfeas Stefanos Thyfronitis Litos, Zhaoxuan Wu, Alfredo Musumeci, Songyun Hu, James Helsby, Michael Breza, William Knottenbelt
We propose a novel blockchain-based data structure which forgoes replication without affecting the append-only nature of blockchains, making it suitable for maintaining data integrity over networks of storage-constrained devices. Our solution does not provide consensus, which is not required by our motivating application, namely securely storing sensor data of containers in cargo ships.
We elucidate the practical promise of our technique by following a multi-faceted approach: We (i) formally prove the security of our protocol in the Universal Composition (UC) setting, as well as (ii) provide a small-scale proof-of-concept implementation, (iii) a performance simulation for large-scale deployments which showcases a reduction in storage of more than $1000$x compared to traditional blockchains, and (iv) a resilience simulation that predicts the practical effects of network jamming attacks.
Apostolos Mavrogiannakis, Xian Wang, Ioannis Demertzis, Dimitrios Papadopoulos, Minos Garofalakis
Zhiyuan An, Fangguo Zhang
Max Duparc, Mounir Taha
These two blinding mechanisms are nicely compatible with each other's and, when combined, provide enhanced resistance against side-channel attacks, both classical and soft analytical, as well as fault injection attacks, while maintaining high performance and low overhead, making the approach well-suited for practical applications, particularly in resource-constrained IoT environments.