13 February 2025
Rejected Challenges Pose New Challenges: Key Recovery of CRYSTALS-Dilithium via Side-Channel Attacks
Yuanyuan Zhou, Weijia Wang, Yiteng Sun, Yu Yu
Motivated by the above, we convert the problem of key recovery (from the leakage of rejection sampling) to an integer linear programming problem (ILP), where rejected responses of unique Hamming weights set upper/lower constraints of the product between the challenge and the private key. We formally study the worst-case complexity of the problem as well as empirically confirm the practicality of the rejected challenge attack. For all three security levels of Dilithium-2/3/5, our attack recovers the private key in seconds or minutes with a 100% Success Rate (SR).
Our attack leverages knowledge of the rejected challenge and response, and thus we propose methods to extract this information by exploiting side-channel leakage from Number Theoretic Transform (NTT) operations. We demonstrate the practicality of this rejected challenge attack by using real side-channel leakage on a Dilithium-2 implementation running on an ARM Cortex-M4 microcontroller. To the best of our knowledge, it is the first efficient side-channel key recovery attack on ML-DSA/Dilithium that targets the rejection sampling procedure. Furthermore, we discuss some countermeasures to mitigate this security issue.
Jiang Yu
At the core of this algorithm are two main cryptographic components: the NeoAlzette permutation S-box based on ARX (Addition-Rotation-XOR) primitives and the innovative pseudo-random number generator XorConstantRotation (XCR), used exclusively in the key expansion process. The NeoAlzette S-box, a non-linear function for 32-bit pairs, is meticulously designed for both encryption strength and operational efficiency, ensuring robust security in resource-constrained environments. During the encryption and decryption processes, a pseudo-randomly selected mixed linear diffusion function, distinct from XCR, is applied, enhancing the complexity and unpredictability of the encryption.
We comprehensively explore the various technical aspects of the Little OaldresPuzzle_Cryptic algorithm.
Its design aims to balance speed and security in the encryption process, particularly for high-speed data transmission scenarios. Recognizing that resource efficiency and execution speed are crucial for lightweight encryption algorithms, without compromising security, we conducted a series of statistical tests to validate the cryptographic security of our algorithm. These tests included assessments of resistance to linear and differential cryptanalysis, among other measures.
By combining the NeoAlzette S-box with sophisticated key expansion using XCR, and integrating the pseudo-randomly selected mixed linear diffusion function in its encryption and decryption processes, our algorithm significantly enhances its capability to withstand advanced cryptographic analysis techniques while maintaining lightweight and efficient operation. Our test results demonstrate that the Little OaldresPuzzle_Cryptic algorithm effectively supports the encryption and decryption needs of high-speed data, ensuring robust security and making it an ideal choice for various modern cryptographic application scenarios.
Keywords: Symmetric Encryption Algorithm, Lightweight Cryptography, ARX Primitives, PRNG, NeoAlzette S-boxes, XorConstantRotation, Diffusion and Confusion Layers, Cryptographic Security, Statistical Tests, Resource-Constrained Environments.
University of New South Wales, Canberra
Closing date for applications:
Contact: Dr Shabnam Kasra
More information: https://www.unsw.edu.au/research/hdr/application
Zhenyu Huang, Fuxin Zhang, Dongdai Lin
Amit Agarwal, Stanislav Peceny, Mariana Raykova, Phillipp Schoppmann, Karn Seth
12 February 2025
Meng Hao, Weiran Liu, Liqiang Peng, Cong Zhang, Pengfei Wu, Lei Zhang, Hongwei Li, Robert H. Deng
Ahmet Ramazan Ağırtaş, James Ball, Michael Belegris, Gustave Charles-Saigne
We introduce a settlement system that leverages Trusted Execution Environments (TEEs) and threshold cryptography to enable secure, private, and efficient settlement of obligations between multiple parties. The system utilizes a distributed key generation model and novel clearing mechanisms to optimize capital efficiency through multilateral netting, while maintaining strong privacy guarantees and regulatory compliance capabilities. By combining TEE-based security with advanced cryptographic protocols, including zero-knowledge proofs and sparse Merkle trees for data verification, our solution enables efficient cross-venue and cross-chain settlement while protecting sensitive trading information. This approach significantly reduces capital requirements for market participants, optimizes transaction costs, and provides institutional-grade clearing infrastructure without compromising on security or privacy. The system's architecture ensures that no single party has complete access to transaction details while maintaining auditability through a distributed backup network, offering a practical solution for institutional adoption of on-chain settlement.
Mahdi Cheraghchi, Nikhil Shagrithaya, Alexandra Veliche
Jian Guo, Wenjie Nan
We construct the bit decomposition/composition gadgets with communication cost $O((\lambda+\lambda_{\text{DCR}}/k)b)$ for integers in the range $(-2^{b-1}, 2^{b-1})$, requiring $O(2^k)$ computations for the GGM-tree. Our approach is compatible with constant-rate multiplication protocols, and the cost decreases as $k$ increases. Even for a small $k=8$, the concrete efficiency ranges from $6\lambda b$ ($b \geq 1000$ bits) to $9\lambda b$ ($b \sim 100$ bits) per decomposition/composition. In addition, we develop the efficient gadgets for mod $q$ and unsigned truncation based on bit decomposition and composition.
We construct efficient arithmetic gadgets over various domains. For bound integers, we improve the multiplication rate in the work of Meyer et al. (TCC 2024) from $\textstyle\frac{\zeta-2}{\zeta+1}$ to $\frac{\zeta-2}{\zeta}$. We propose new garbling schemes over other domains through bounded integers with our modular and truncation gadgets, which is more efficient than previous constructions. For $\mathbb{Z}_{2^b}$, additions and multiplication can be garbled with a communication cost comparable to our bit decomposition. For general finite field $\mathbb{F}_{p^n}$, particularly for large values of $p$ and $n$, we garble the addition and multiplication at the cost of $O((\lambda+\lambda_{\text{DCR}}/k)b)$, where $b = n\lceil \log p \rceil$. For applications to real numbers, we introduce an ``error-based'' truncation that makes the cost of multiplication dependent solely on the desired precision.
Xinhai Wang, Lin Ding, Zhengting Li, Jiang Wan, Bin Hu
Arad Kotzer, Bence Ladóczki, János Tapolcai, Ori Rottenstreich
Guilherme Rito, Christopher Portmann, Chen-Da Liu-Zhang
The only work modeling dishonest parties' ability of "making things up" was by Maurer et al. (ASIACRYPT '21), who modeled the security of MDVS, also in CC. Their security model has two fundamental limitations: 1. deniability is not guaranteed when honest receivers read; 2. it relies on the CC-specific concept of specifications.
We solve both problems. Regarding the latter, our model is a standard simulator-based one. Furthermore, our composable treatment allowed to identify a new property, Forgery Invalidity, without which we do not know how to prove the deniability of neither MDVS nor MDRS-PKE when honest receivers read. Finally, we prove that Chakraborty et al.'s MDVS (EUROCRYPT '23) has this property, and that Maurer et al.'s MDRS-PKE (EUROCRYPT '22) preserves it from the underlying MDVS.
Intak Hwang, Seonhong Min, Yongsoo Song
In this work, we introduce a novel security notion for HE, called ciphertext simulatability, which precisely captures the security requirements of HE in the construction of 2PC. Then, we provide a concrete construction of ciphertext-simulatable HE from the BFV scheme by modifying its evaluation algorithm. We provide theoretical analysis and demonstrate experimental results to ensure that our solution has insignificant overhead in terms of parameter size and error growth. As a matter of independent interest, we demonstrate how our approach of designing ciphertext-simulatable BFV can be further extended to satisfy stronger security notions such as sanitization.
Alex B. Grilo, Ami Paz, Mor Perry
In this work, we define and study distributed non-interactive zero-knowledge proofs (dNIZK); these can be seen as a non-interactive version of the aforementioned model, and also as a zero-knowledge version of PLS. We prove the following:
- There exists a dNIZK protocol for $3$-coloring with $O(\log n)$-bit messages from the prover and $O(\log n)$-size messages among neighbors. This disproves a conjecture from previous work asserting that the total number of bits from the prover should grow linearly with the number of edges.
- There exists a family of dNIZK protocols for triangle-freeness, that presents a trade-off between the size of the messages from the prover and the size of the messages among neighbors. Interestingly, we also introduce a variant of this protocol where the message size depends only on the maximum degree of a node and not on the total number of nodes, improving upon the previous non-zero-knowledge protocol for this problem.
- There exists a dNIZK protocol for any graph property in NP in the random oracle models, which is secure against an arbitrary number of malicious parties. Previous work considered compilers from PLS to distributed zero-knowledge protocol, which results in protocols with parameters that are incomparable to ours.
Hyeonhak Kim, DongHoe Heo, Seokhie Hong
Hao Guo, Liqiang Peng, Haiyang Xue, Li Peng, Weiran Liu, Zhe Liu, Lei Hu
We propose a novel approach to study 2PC from a geometric perspective. Specifically, we interpret the two shares of a secret as the horizontal and vertical coordinates of a point in a Cartesian coordinate system, with the secret itself represented as the corresponding point. This reformulation allows us to address the comparison problem by determining the region where the point lies. Furthermore, we identify scenarios where the costly comparison protocol can be replaced by more efficient evaluating AND gate protocols within a constrained range. Using this method, we improve protocols for truncation, signed extension and signed non-uniform multiplication, all of which are fundamental to 2PC. In particular, for the one-bit error truncation protocol and signed extension protocols, we reduce the state-of-the-art communication complexities of Cheetah (USENIX’22) and SirNN (S\&P’21) from $\approx \lambda (l + 1)$ to $\approx \lambda$ in two rounds, where $l$ is the input length and $\lambda$ is the security parameter. For signed multiplication with non-uniform bit-width, we reduce the communication cost of SirNN's by 40\% to 60\%.
Mi-Ying Miryam Huang, Xinyu Mao, Jiapeng Zhang
Song Bian, Haowen Pan, Jiaqi Hu, Zhou Zhang, Yunhao Fu, Jiafeng Hua, Yi Chen, Bo Zhang, Yier Jin, Jin Dong, Zhenyu Guan
Budapest, Hungary, 19 June - 20 June 2025
Submission deadline: 20 March 2025
University of Versailles St-Quentin-en-Yvelines, France
A tenured Professor faculty position (“Professeur des universités”) is open to highly qualified candidates who are committed to a career in research and teaching. Preference will be given to candidates with very strong research achievements in one or several of the areas related to the general fields of cryptology and information security.
Responsibilities include research leadership and dissemination, supervision of doctoral students, development of national or international research projects, and strong commitment to teaching at undergraduate or graduate level.
Deadline for submitting applications: Friday, April 4, 2025, 4 PM, Paris time (France).
For selected candidates, in person auditions will take place in Versailles.
IMPORTANT NOTE: Except for candidates who are currently “Maître de conférences” in France and hold an HDR diploma (“Habilitation à diriger des recherches”), a “Qualification aux fonctions de professeur des universités” certificate from the french “Conseil National des Universités” is usually required to apply. However candidates who already hold a tenured Professor (or equivalent) position may in some cases be exempted from this certificate.
Closing date for applications:
Contact: Louis Goubin, Full Professor, head of the "Cryptology and Information Security" group
e-mail: louis.goubin (at) uvsq.fr