International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Updates on the COVID-19 situation are on the Announcement channel.

Here you can see all recent updates to the IACR webpage. These updates are also available:

RSS symbol icon
via RSS feed
Twitter bird icon
via Twitter
Weibo icon
via Weibo
Facebook icon
via Facebook

22 May 2023

Ping Wang, Yiting Su
ePrint Report ePrint Report
The relationship between complexity classes BQP and QMA is analogous to the relationship between P and NP. In this paper, we design a quantum bit commitment problem that is in QMA, but not in BQP. Therefore, it is proved that BQP $\neq$ QMA. That is, problems that are verifiable in quantum polynomial time are not necessarily solvable in quantum polynomial time, the quantum analog of P $\neq$ NP.
Expand
Ghada Almashaqbeh, Rohit Chatterjee
ePrint Report ePrint Report
Unclonable cryptography builds primitives that enjoy some form of unclonability, such as quantum money, software copy protection, and bounded execution programs. These are impossible in the classical model as classical data is inherently clonable. Quantum computing, with its no-cloning principle, offers a solution. However, it is not enough to realize bounded execution programs; these require one-time memory devices that self-destruct after a single data retrieval query. Very recently, a new no-cloning technology has been introduced [Eurocrypt'22], showing that unclonable polymers---proteins---can be used to build bounded-query memory devices and unclonable cryptographic applications.

In this paper, we investigate the relation between these two technologies; whether one can replace the other, or complement each other such that combining them brings the best of both worlds. Towards this goal, we review the quantum and unclonable polymer models, and existing unclonable cryptographic primitives. Then, we discuss whether these primitives can be built using the other technology, and show alternative constructions and notions when possible. We also offer insights and remarks for the road ahead. We believe that this study will contribute in advancing the field of unclonable cryptography on two fronts: developing new primitives, and realizing existing ones using new constructions.
Expand
Tabitha Ogilvie
ePrint Report ePrint Report
Homomorphic Encryption (HE) is a type of cryptography that allows computing on encrypted data, enabling computation on sensitive data to be outsourced securely. Many popular HE schemes rely on noise for their security. On the other hand, Differential Privacy seeks to guarantee the privacy of data subjects by obscuring any one individual's contribution to an output. Many mechanisms for achieving Differential Privacy involve adding appropriate noise. In this work, we investigate the extent to which the noise native to Homomorphic Encryption can provide Differential Privacy "for free".

We identify the dependence of HE noise on the underlying data as a critical barrier to privacy, and derive new results on the Differential Privacy under this constraint. We apply these ideas to a proof of concept HE application, ridge regression training using gradient descent, and are able to achieve privacy budgets of $\varepsilon \approx 2$ after 50 iterations.
Expand
Luke Harmon, Gaetan Delavignette, Arnab Roy, David Silva
ePrint Report ePrint Report
A large part of current research in homomorphic encryption (HE) aims towards making HE practical for real-world applications. In any practical HE, an important issue is to convert the application data (type) to the data type suitable for the HE. The main purpose of this work is to investigate an efficient HE-compatible encoding method that is generic, and can be easily adapted to apply to the HE schemes over integers or polynomials. $p$-adic number theory provides a way to transform rationals to integers, which makes it a natural candidate for encoding rationals. Although one may use naive number-theoretic techniques to perform rational-to-integer transformations without reference to $p$-adic numbers, we contend that the theory of $p$-adic numbers is the proper lens to view such transformations. In this work we identify mathematical techniques (supported by $p$-adic number theory) as appropriate tools to construct a generic rational encoder which is compatible with HE. Based on these techniques, we propose a new encoding scheme PIE, that can be easily combined with both AGCD-based and RLWE-based HE to perform high precision arithmetic. After presenting an abstract version of PIE, we show how it can be attached to two well-known HE schemes: the AGCD-based IDGHV scheme and the RLWE-based (modified) Fan-Vercauteren scheme. We also discuss the advantages of our encoding scheme in comparison with previous works.
Expand

17 May 2023

Lund University, Faculty of Engineering, Department of Electrical and Information Technology
Job Posting Job Posting
The PhD research project is in the area of cryptology and includes an investigation into the research topic of implementation security within post-quantum cryptography, particularly in the context of embedded software.The student will do research on the analysis of code-based and lattice-based cryptographic primitives and implementations through side-channel attacks and fault-injection attacks. The work includes both developing attacks and various protection methods and their security evaluations.

Senior researchers will be active in the project and provide supervision. The work will primarily be funded through WASP (https://wasp-sweden.org/).

The main duties of doctoral students are to devote themselves to their research studies which includes participating in research projects and third cycle courses. The work duties can also include teaching and other departmental duties (no more than 20%).

Apply here: https://lu.varbi.com/what:job/jobID:627038/?lang=en

Closing date for applications:

Contact: Qian Guo

More information: https://lu.varbi.com/what:job/jobID:627038/?lang=en

Expand
Institute for Advancing Intelligence, TCG CREST, Kolkata
Job Posting Job Posting
Institute for Advancing Intelligence (IAI), under TCG Centres for Research and Education in Science and Technology (TCG CREST), is offering Ph.D. in Science and Ph.D. in Engineering in broad areas of Computer Science and Mathematics with special focus on Artificial Intelligence, Machine Learning, NLP, Cryptography and Security, Pure Mathematics and its application areas, Quantum Cryptography and Quantum Information Processing. The research program in the Cryptography and Security group at IAI TCG-CREST focuses on the theoretical as well as the applied aspect of Cryptology and Security research. The research group of cryptography at IAI mostly, but is not restricted to, works in the following areas of Cryptology and Security: (a) Light-Weight Cryptography, (b) Provable Security of Symmetric Key Cryptograph, (c) Design and Analysis of Authenticated Ciphers, (d) Beyond Birthday Bound Security of Symmetric key cryptographic primitives, (e) Symmetric key Cryptanalysis, (f) Symmetric Searchable Encryption, (g) Secure Cloud Computing, (h) Blockchain Technology, (i) Quantum Cryptography and Quantum Computation, (j) Lattice based Cryptography, (k) White-Box Cryptography. For more details, please visit to the webpage https://www.tcgcrest.org/cryptology/ We are expecting to include more topics in the future pertinent to the cryptography and security area depending upon the requirement and global innovations. In particular, we are aiming to contribute to the area of network security.

Closing date for applications:

Contact: nilanjan.datta@tcgcrest.org, avijit.dutta@tcgcrest.org, avik.chakraborti@tcgcrest.org

More information: https://www.tcgcrest.org/institutes/iai/

Expand
Rome, Italy, 14 December - 15 December 2023
Event Calendar Event Calendar
Event date: 14 December to 15 December 2023
Submission deadline: 31 May 2023
Notification: 31 July 2023
Expand
Copenhagen, Denmark, 30 November 2023
Event Calendar Event Calendar
Event date: 30 November 2023
Submission deadline: 25 June 2023
Notification: 5 August 2023
Expand
Atlanta, United States, 31 October - 2 November 2023
Event Calendar Event Calendar
Event date: 31 October to 2 November 2023
Submission deadline: 1 July 2023
Notification: 10 August 2023
Expand

16 May 2023

Dai xiaokang, Jingwei Chen, Wenyuan Wu, Yong Feng
ePrint Report ePrint Report
For standard \LWE samples $(\mathbf{A},\mathbf{b = sA + e})$, $\mathbf{A}$ is typically uniformly over $\mathbb{Z}_q^{n \times m}$, and under the \LWE assumption, the conditional distribution of $\mathbf{s}$ given $\mathbf{b}$ and $\mathbf{s}$ should be consistent. However, when $\mathbf{A}$ is chosen by an adversary, the gap between the two may be larger. In this work, we are mainly interested in quantifying $\tilde{H}_\infty(\mathbf{s}|\mathbf{sA + e})$, while $\mathbf{A}$ is chosen by an adversary. Brakerski and D\"{o}ttling answered the question in one case : they proved that when $\mathbf{s}$ was uniformly chosen from $\mathbb{Z}_q^n$, it holds that $\tilde{H}_\infty(\mathbf{s}|\mathbf{sA + e}) \varpropto \rho_\sigma(\Lambda_q(\mathbf{A}))$. We prove that for any $d < q$ and $\mathbf{s}$ is uniformly chosen from $\mathbb{Z}_d^n$, the above result still holds.

In addition, as an independent result, we have also proved the regularity of the hash function mapped to the prime-order group and its Cartesian product.

As an application of the above results, we improved the multi-key fully homomorphic encryption\cite{TCC:BraHalPol17} and answered the question raised at the end of their work in positive way : we have GSW type ciphertext rather than Dual-GSW, and the improved scheme has shorter keys and ciphertexts
Expand
S Murugesh
ePrint Report ePrint Report
We propose a quantum algorithm that crucially involves the receiver's public-key to establish secure communication of an intended message string, using shared entangled-qubits. The public-key in question is a random bit string that proclaims the sequence of measurement basis used by the receiver. As opposed to known quantum key distribution protocols, wherein a random key string is generated at the end of the communication cycle, here the sender's intended bit string itself is communicated across securely. The quantum outlay for the proposed protocol is limited to the sender and receiver sharing pairs of entangled qubits, prepared in ? ?????? known states, besides unitary manipulations and measurements that the sender and receiver individually perform on their respective qubits, within their confines.
Expand
Mehmet Sabir Kiraz, Enrique Larraia, Owen Vaughan
ePrint Report ePrint Report
Abstract. Non-fungible tokens (NFTs) are digital representations of assets stored on a blockchain. It allows content creators to certify authenticity of their digital assets and transfer ownership in a transparent and decentralized way. Popular choices of NFT marketplaces infrastructure include blockchains with smart contract functionality or layer-2 solutions. Surprisingly, researchers have largely avoided building NFT schemes over Bitcoin-like blockchains, most likely due to high transaction fees in the BTC network and the belief that Bitcoin lacks enough programmability to implement fair exchanges. In this work we fill this gap. We propose an NFT scheme where trades are settled in a single Bitcoin transaction as opposed to executing complex smart contracts. We use zero-knowledge proofs (concretely, recursive SNARKs) to prove that two Bitcoin transactions, the issuance transaction $tx_0$ and the current trade transaction $tx_n$, are linked through a unique chain of transactions. Indeed, these proofs function as “off-chain receipts” of ownership that can be transferred from the current owner to the new owner using an insecure channel. The size of the proof receipt is short, independent of the total current number of trades $n$, and can be updated incrementally by anyone at anytime. Marketplaces typically require some degree of token ownership delegation, e.g., escrow accounts, to execute the trade between sellers and buyers that are not online concurrently, and to alleviate transaction fees they resort to off-chain trades. This raises concerns on the transparency and purportedly honest behaviour of marketplaces. We achieve fair and non-custodial trades by leveraging our off-chain receipts and letting the involved parties carefully sign the trade transaction with appropriate combinations of sighash flags.
Expand
Koustabh Ghosh, Jonathan Fuchs, Parisa Amiri Eliasi, Joan Daemen
ePrint Report ePrint Report
In this paper we propose a new construction for building universal hash functions, a specific instance called multi-265, and provide proofs for their universality. Our construction follows the key-then-hash parallel paradigm. In a first step it adds a variable length input message to a secret key and splits the result in blocks. Then it applies a fixed-length public function to each block and adds their results to form the output. The innovation presented in this work lies in the public function: we introduce the multiply-transform-multiply-construction that makes use of field multiplication and linear transformations. We prove upper bounds for the universality of key-then-hash parallel hash functions making use of a public function with our construction provided the linear transformation are maximum-distance-separable (MDS). We additionally propose a concrete instantiation of our construction multi-265, where the underlying public function uses a near-MDS linear transformation and prove it to be $2^{-154}$-universal. We also make the reference code for multi-265 available.
Expand
Jeffrey Champion, David J. Wu
ePrint Report ePrint Report
Zero-knowledge and succinctness are two important properties that arise in the study of non-interactive arguments. Previously, Kitagawa et al. (TCC 2020) showed how to obtain a non-interactive zero-knowledge (NIZK) argument for NP from a succinct non-interactive argument (SNARG) for NP. In particular, their work demonstrates how to leverage the succinctness property from an argument system and transform it into a zero-knowledge property.

In this work, we study a similar question of leveraging succinctness for zero-knowledge. Our starting point is a batch argument for NP, a primitive that allows a prover to convince a verifier of $T$ NP statements $x_1, \ldots, x_T$ with a proof whose size scales sublinearly with $T$. Unlike SNARGs for NP, batch arguments for NP can be built from group-based assumptions in both pairing and pairing-free groups and from lattice-based assumptions. The challenge with batch arguments is that the proof size is only amortized over the number of instances, but can still encode full information about the witness to a small number of instances.

We show how to combine a batch argument for NP with a local pseudorandom generator (i.e., a pseudorandom generator where each output bit only depends on a small number of input bits) and a dual-mode commitment scheme to obtain a NIZK for NP. Our work provides a new generic approach of realizing zero-knowledge from succinctness and highlights a new connection between succinctness and zero-knowledge.
Expand
Xiaohan Yue
ePrint Report ePrint Report
Decentralization, verifiability, and privacy-preserving are three fundamental properties of modern e-voting. In this paper, we conduct extensive investigations into them and present a novel e-voting scheme, VeriVoting, which is the first to satisfy these properties. More specifically, decentralization is realized through blockchain technology and the distribution of decryption power among competing entities, such as candidates. Furthermore, verifiability is satisfied when the public verifies the ballots and decryption keys. And finally, bidirectional unlinkability is achieved to help preserve privacy by decoupling voter identity from ballot content. Following the ideas above, we first leverage linear homomorphic encryption schemes and non-interactive zero-knowledge argument systems to construct a voting primitive, SemiVoting, which meets decentralization, decryption-key verifiability, and ballot privacy. To further achieve ballot ciphertext verifiability and anonymity, we extend this primitive with blockchain and verifiable computation to finally arrive at VeriVoting. Through security analysis and per-formance evaluations, VeriVoting offers a new trade-off between security and efficiency that differs from all previous e-voting schemes and provides a radically novel practical ap-proach to large-scale elections.
Expand
Saleh Khalaj Monfared, Tahoura Mosavirik, Shahin Tajik
ePrint Report ePrint Report
The threat of physical side-channel attacks and their countermeasures is a widely researched field. Most physical side-channel attacks rely on the unavoidable influence of computation or storage on voltage or current fluctuations. Such data-dependent influence can be exploited by, for instance, power or electromagnetic analysis. In this work, we introduce a novel non-invasive physical side-channel attack, which exploits the data-dependent changes in the impedance of the chip. Our attack relies on the fact that the temporarily stored contents in registers alter the physical characteristics of the circuit, which results in changes in the die's impedance. To sense such impedance variations, we deploy a well-known RF/microwave method called scattering parameter analysis, in which we inject sine wave signals with high frequencies into the system's power distribution network (PDN) and measure the echo of the signals. We demonstrate that according to the content bits and physical location of a register, the reflected signal is modulated differently at various frequency points enabling the simultaneous and independent probing of individual registers. Such side-channel leakage violates the $t$-probing security model assumption used in masking, which is a prominent side-channel countermeasure. To validate our claims, we mount non-profiled and profiled impedance analysis attacks on hardware implementations of unprotected and high-order masked AES. We show that in the case of profiled attack, only a single trace is required to recover the secret key. Finally, we discuss how a specific class of hiding countermeasures might be effective against impedance leakage.
Expand
Yupu Hu, Dong Siyue, Wang Baocang, Dong Xingting
ePrint Report ePrint Report
Indistinguishability obfuscation (IO) is at the frontier of cryptography research for several years. LV16/Lin17 obfuscation schemes are famous progresses towards simplifying obfuscation mechanism. In fact, these two schemes only constructed two compact functional encryption (CFE) algorithms, while other things were taken to AJ15 IO frame or BV15 IO frame. That is, CFE algorithms are inserted into AJ15 IO frame or BV15 IO frame to form a complete IO scheme. The basic structure of two CFE algorithms can be described in the following way. The polynomial-time-computable Boolean function is transformed into a group of low-degree low-locality component functions by using randomized encoding, while some public combination of values of component functions is the value of original Boolean function. The encryptor uses constant-degree multilinear maps (rather than polynomial-degree multilinear maps) to encrypt independent variables of component functions. The decryptor uses zero-testing tool of multilinear maps to obtain values of component functions (rather than to obtain values of independent variables), and then uses public combination to obtain the value of original Boolean function.

In this paper we restrict IO to be a real white box (RWB). Under such restriction we point out that LV16/Lin17 CFE algorithms being inserted into AJ15 IO frame are invalid. More detailedly, such insertion makes the adversary gradually learn the shape of the function, therefore the scheme is not secure. In other words, such scheme is not a real IO scheme, but rather a garbling scheme. It needs to be said that RWB restriction is reasonable, which means the essential contribution of IO for cryptography research.
Expand
Quang Dao, Jim Miller, Opal Wright, Paul Grubbs
ePrint Report ePrint Report
A flurry of excitement amongst researchers and practitioners has produced modern proof systems built using novel technical ideas and seeing rapid deployment, especially in cryptocurrencies. Most of these modern proof systems use the Fiat-Shamir (F-S) transformation, a seminal method of removing interaction from a protocol with a public-coin verifier. Some prior work has shown that incorrectly applying F-S (i.e., using the so-called "weak" F-S transformation) can lead to breaks of classic protocols like Schnorr's discrete log proof; however, little is known about the risks of applying F-S incorrectly for modern proof systems seeing deployment today.

In this paper, we fill this knowledge gap via a broad theoretical and practical study of F-S in implementations of modern proof systems. We perform a survey of open-source implementations and find 36 weak F-S implementations affecting 12 different proof systems. For four of these---Bulletproofs, Plonk, Spartan, and Wesolowski's VDF---we develop novel knowledge soundness attacks accompanied by rigorous proofs of their efficacy. We perform case studies of applications that use vulnerable implementations, and demonstrate that a weak F-S vulnerability could have led to the creation of unlimited currency in a private blockchain protocol. Finally, we discuss possible mitigations and takeaways for academics and practitioners.
Expand
Ginevra Giordani, Lorenzo Grassi, Silvia Onofri, Marco Pedicini
ePrint Report ePrint Report
The construction of invertible non-linear layers over $\mathbb F_p^n$ that minimize the multiplicative cost is crucial for the design of symmetric primitives targeting Multi Party Computation (MPC), Zero-Knowledge proofs (ZK), and Fully Homomorphic Encryption (FHE). At the current state of the art, only few non-linear functions are known to be invertible over $\mathbb F_p$, as the power maps $x\mapsto x^d$ for $\gcd(d,p-1)=1$. When working over $\mathbb F_p^n$ for $n\ge2$, a possible way to construct invertible non-linear layers $\mathcal S$ over $\mathbb F_p^n$ is by making use of a local map $F:\mathbb F_p^m\rightarrow \mathbb F_p$ for $m\le n$, that is, $\mathcal S_F(x_0, x_1, \ldots, x_{n-1}) = y_0\|y_1\|\ldots \|y_{n-1}$ where $y_i = F(x_i, x_{i+1}, \ldots, x_{i+m-1})$. This possibility has been recently studied by Grassi, Onofri, Pedicini and Sozzi at FSE/ToSC 2022. Given a quadratic local map $F:\mathbb F_p^m \rightarrow \mathbb F_p$ for $m\in\{1,2,3\}$, they proved that the shift-invariant non-linear function $\mathcal S_F$ over $\mathbb F_p^n$ defined as before is never invertible for any $n\ge 2\cdot m-1$. In this paper, we face the problem by generalizing such construction. Instead of a single local map, we admit multiple local maps, and we study the creation of nonlinear layers that can be efficiently verified and implemented by a similar shift-invariant lifting. After formally defining the construction, we focus our analysis on the case $\mathcal S_{F_0, F_1}(x_0, x_1, \ldots, x_{n-1}) = y_0\|y_1\|\ldots \|y_{n-1}$ for $F_0, F_1 :\mathbb F_p^2\rightarrow \mathbb F_p$ of degree at most 2. This is a generalization of the previous construction using two alternating functions $F_0,F_1$ instead of a single $F$. As main result, we prove that (i) if $n\ge3$, then $\mathcal S_{F_0, F_1}$ is never invertible if both $F_0$ and $F_1$ are quadratic, and that (ii) if $n\ge 4$, then $\mathcal S_{F_0, F_1}$ is invertible if and only if it is a Type-II Feistel scheme.
Expand
Erica Blum, Jonathan Katz, Julian Loss, Kartik Nayak, Simon Ochsenreither
ePrint Report ePrint Report
Protocols for state-machine replication (SMR) often trade off performance for resilience to network delay. In particular, protocols for asynchronous SMR tolerate arbitrary network delay but sacrifice throughput/latency when the network is fast, while partially synchronous protocols have good performance in a fast network but fail to make progress if the network experiences high delay. Existing hybrid protocols are resilient to arbitrary network delay and have good performance when the network is fast, but suffer from high overhead (``thrashing'') if the network repeatedly switches between being fast and slow (e.g., in a network that is typically fast but has intermittent message delays).

We propose Abraxas, a generic approach for constructing a hybrid protocol based on any protocol $\Pi_\mathsf{fast}$ and any asynchronous protocol $\Pi_\mathsf{slow}$ to achieve (1)~security and performance equivalent to $\Pi_\mathsf{slow}$ under arbitrary network behavior; (2)~performance equivalent to $\Pi_\mathsf{fast}$ when conditions are favorable. We instantiate Abraxas with the best existing protocols for $\Pi_\mathsf{fast}$ (Jolteon) and $\Pi_\mathsf{slow}$ (2-chain VABA), and show experimentally that the resulting protocol significantly outperforms Ditto, the previous state-of-the-art hybrid protocol.
Expand
◄ Previous Next ►