28 January 2025
Minghang Li, Qianhong Wu, Zhipeng Wang, Bo Qin, Bohang Wei, Hang Ruan, Shihong Xiong, Zhenyang Ding
We propose TockOwl, the first asynchronous consensus protocol with fault adaptability. TockOwl features quadratic communication and constant round complexity, allowing it to remain efficient in fault-free scenarios. TockOwl also possesses crash robustness, enabling it to maintain stable performance when facing crash faults. These properties collectively ensure the fault adaptability of TockOwl.
Furthermore, we propose TockOwl+ that has network adaptability. TockOwl+ incorporates both fast and slow tracks and employs hedging delays, allowing it to achieve low latency comparable to partially synchronous protocols without waiting for timeouts in asynchronous environments. Compared to the latest dual-track protocols, the slow track of TockOwl+ is simpler, implying shorter latency in fully asynchronous environments.
Henry Bambury, Phong Q. Nguyen
Ryan Lehmkuhl, Alexandra Henzinger, Henry Corrigan-Gibbs
We construct a distributional-PIR scheme that makes black-box use of classic PIR protocols, and prove a lower bound on the server-runtime of a large class of distributional-PIR schemes. On two real-world popularity distributions, our distributional-PIR construction reduces compute costs by $5$-$77\times$ compared to existing techniques. Finally, we build CrowdSurf, an end-to-end system for privately fetching tweets, and show that distributional-PIR reduces the end-to-end server cost by $8\times$.
Xavier Bultel, Charles Olivier-Anclin
A natural fix to this model, already introduced in some previous work, is proposed in a corruption model where the attacker can generate the keys of certain users themselves, which seems much more coherent in a context where the group of users can be constructed in an ad hoc way at the time of signing. We believe that these two changes make the security model more realistic. Indeed, within the framework of this model, our counter-examples becomes insecure. Furthermore, we show that most of the schemes in the literature we surveyed appear to have been designed to achieve the security guaranteed by the latest model, which reinforces the idea that the model is closer to the informal intuition of what anonymity should be in linkable ring signatures.
Neekon Vafa, Vinod Vaikuntanathan
For $\mathrm{SBP}_\kappa$, statistically, solutions exist with $\kappa(x) = 2^{-\Theta(x)}$ (Aubin, Perkins and Zdeborova, Journal of Physics 2019). For large $n$, the best that efficient algorithms have been able to achieve is a far cry from the statistical bound, namely $\kappa(x) = \Theta(1/\sqrt{x})$ (Bansal and Spencer, Random Structures and Algorithms 2020). The problem has been extensively studied in the TCS and statistics communities, and Gamarnik, Kizildag, Perkins and Xu (FOCS 2022) conjecture that Bansal-Spencer is tight: namely, $\kappa(x) = \widetilde{\Theta}(1/\sqrt{x})$ is the optimal value achieved by computationally efficient algorithms. We prove their conjecture assuming the worst-case hardness of approximating the shortest vector problem on lattices.
For $\mathrm{NPP}_\kappa$, statistically, solutions exist with $\kappa(m) = \Theta(2^{-m})$ (Karmarkar, Karp, Lueker and Odlyzko, Journal of Applied Probability 1986). Karmarkar and Karp's classical differencing algorithm achieves $\kappa(m) = 2^{-O(\log^2 m)}~.$ We prove that Karmarkar-Karp is nearly tight: namely, no polynomial-time algorithm can achieve $\kappa(m) = 2^{-\Omega(\log^3 m)}$, once again assuming the worst-case subexponential hardness of approximating the shortest vector problem on lattices to within a subexponential factor.
Our hardness results are versatile, and hold with respect to different distributions of the matrix $\mathbf{A}$ (e.g., i.i.d. uniform entries from $[0,1]$) and weaker requirements on the solution vector $\mathbf{x}$.
Benedikt Bünz, Tushar Mopuri, Alireza Shirzad, Sriram Sridhar
Ivan Bjerre Damgård, Simon Holmgaard Kamp, Julian Loss, Jesper Buus Nielsen
Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, Giovanni Tognolini
Chang Chen, Guoyu Yang, Qi Chen, Wei Wang, Jin Li
In this paper, we introduce a public key encryption with equality test as a regulatory text for each authentication record to address the above-mentioned challenges. The security of this feature is guaranteed by the verifiability, non-frameability, and round isolation of the proposed scheme. We compared the asymptotic complexity of our scheme with other traceable AC schemes and shows our scheme has advantages in tracing tasks as well as securely outsourcing them. The key feature of our scheme is that the ability of equality test of regulatory texts is independent of the public key, but rather depends on the round identifier of the authentication. We instantiate a traceable, hardware-binding AC scheme based on smart cards and BBS+ signature and give the performance analysis of it.
27 January 2025
Hayder Tirmazi
Ali Şah Özcan, Erkay Savaş
Thomas Pornin
Yunhao Wang, Fan Zhang
In this work, we present Qelect, the first practical constant-round post-quantum secure SSLE protocol. We first adapt the commitment scheme in Boneh \textit{et al.} (AFT'23) into a \textit{multi-party randomizable commitment} scheme, and propose our novel construction based on an adapted version of ring learning with errors (RLWE) problem. We then use it as a building block and construct a \textit{constant-round} single secret leader election (crSSLE) scheme. We utilize the single instruction multiple data (SIMD) property of a specific threshold fully homomorphic encryption (tFHE) scheme to evaluate our election circuit efficiently. Finally, we built Qelect from the crSSLE scheme, with performance optimizations including a preprocessing phase to amortize the local computation runtime and a retroactive detection phase to avoid the heavy zero-knowledge proofs during the election phase. Qelect achieves asymptotic improvements and is concretely practical. We implemented a prototype of Qelect and evaluated its performance in a WAN. Qelect is at least two orders of magnitude faster than the state-of-the-art.
Vasyl Ustimenko
Katharina Boudgoust, Hannah Keller
In this work, we show that the hardness of standard $\mathsf{MLWE}$ implies the hardness of truncated $\mathsf{MLWE}$, both for search and decision versions. Prior works only covered the search variant and relied on the (module) $\mathsf{NTRU}$ assumption, limitations which we are able to overcome. Overall, we provide two approaches, offering different advantages. The first uses a general Rényi divergence argument, applicable to a wide range of secret/error distributions, but which only works for the search variants of (truncated) $\mathsf{MLWE}$. The second applies to the decision versions, by going through an intermediate variant of $\mathsf{MLWE}$, where additional hints on the secret are given to the adversary. However, the reduction makes use of discrete Gaussian distributions.
Nouri Alnahawi, David Haas, Erik Mauß, Alexander Wiesmaier
Dmitry Khovratovich, Ron D. Rothblum, Lev Soukhanov
In this work we show such an attack for a standard and popular interactive succinct argument, based on the GKR protocol, for verifying the correctness of a non-determinstic bounded-depth computation. For every choice of FS hash function, we show that a corresponding instantiation of this protocol, which was been widely studied in the literature and used also in practice, is not (adaptively) sound when compiled with the FS transform. Specifically, we construct an explicit circuit for which we can generate an accepting proof for a false statement. We further extend our attack and show that for every circuit $C$ and desired output $y$, we can construct a functionally equivalent circuit $C^*$, for which we can produce an accepting proof that $C^*$ outputs $y$ (regardless of whether or not this statement is true). This demonstrates that any security guarantee (if such exists) would have to depend on the specific implementation of the circuit $C$, rather than just its functionality.
Lastly, we also demonstrate versions of the attack that violate non-adaptive soundness of the protocol -- that is, we generate an attacking circuit that is independent of the underlying cryptographic objects. However, these versions are either less practical (as the attacking circuit has very large depth) or make some additional (reasonable) assumptions on the underlying cryptographic primitives.
Martin R. Albrecht, Nicolas Gama, James Howe, Anand Kumar Narayanan
Jonas Schupp, Georg Sigl
26 January 2025
Okinawa Institute of Science and Technology (OIST), Japan
As part of the collaboration between the Okinawa Institute of Science and Technology (OIST) and Partisia (Aarhus, Denmark), the Applied Cryptography Unit at OIST is seeking to hire a postdoctoral scholar to conduct research on applications of Secure Multi-party Computation (MPC) to quantum cryptography.
The postdoc will investigate how MPC techniques may be used to enhance the security and functionality of Quantum Key Distribution (QKD) enabled networks. The project will be led by Prof. Carlos Cid at OIST, with close collaboration with researchers from Partisia. The ideal candidate will have experience in the design and analysis of secure computation protocols, and strong knowledge of quantum cryptography.
We are seeking candidates with excellent post-graduate academic formation in cryptography, mathematics, computer science, or a closely related field, with research strong experience in the design and analysis of secure computation, and in quantum cryptography. Candidates must have a PhD at the time of commencing the position. This is a full-time, fixed-term appointment for 2 years, potentially extended depending of performance and other circumstances.
Starting Date: as soon as possible.
Closing date for applications:
Contact: Carlos Cid (carlos.cid_[at]_oist.jp)
More information: https://www.oist.jp/careers/postdoctoral-scholar-multi-party-computation-and-quantum-cryptography-applied-cryptography-unit