International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 18 July 2022

Erdem Alkim, Vincent Hwang, Bo-Yin Yang
ePrint Report ePrint Report
We propose NTT implementations with each supporting at least one parameter of NTRU and one parameter of NTRU Prime. Our implementations are based on size-1440, size-1536, and size-1728 convolutions without algebraic assumptions on the target polynomial rings. We also propose several improvements for the NTT computation. Firstly, we introduce dedicated radix-(2,3) butterflies combining Good–Thomas FFT and vector-radix FFT. In general, there are six dedicated radix-(2, 3) butterflies and they together support implicit permutations. Secondly, for odd prime radices, we show that the multiplications for one output can be replaced with additions/subtractions. We demonstrate the idea for radix-3 and show how to extend it to any odd prime. Our improvement also applies to radix-(2, 3) butterflies. Thirdly, we implement an incomplete version of Good–Thomas FFT for addressing potential code size issues. For NTRU, our polynomial multiplications outperform the state-of-the-art by 2.8%−10.3%. For NTRU Prime, our polynomial multiplications are slower than the state-of-the-art. However, the SotA exploits the specific structure of coefficient rings or polynomial moduli, while our NTT-based multiplications exploit neither and apply across different schemes. This reduces the engineering effort, including testing and verification.

Additional news items may be found on the IACR news page.