International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 03 August 2022

Sabrina Kunzweiler
ePrint Report ePrint Report
Elliptic curves are abelian varieties of dimension one; the two-dimensional analogue are abelian surfaces. In this work we present an algorithm to compute $(2^n,2^n)$-isogenies of abelian surfaces defined over finite fields. These isogenies are the natural generalization of $2^n$-isogenies of elliptic curves. Our algorithm is designed to be used in higher-dimensional variants of isogeny-based cryptographic protocols such as G2SIDH which is a genus-$2$ version of the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange. We analyze the performance of our algorithm in cryptographically relevant settings and show that it significantly improves upon previous implementations.

Different results deduced in the development of our algorithm are also interesting beyond this application. For instance, we derive a formula for the evaluation of $(2,2)$-isogenies. Given an element in Mumford coordinates, this formula outputs the (unreduced) Mumford coordinates of its image under the $(2,2)$-isogeny. Furthermore, we study $4$-torsion points on Jacobians of hyperelliptic curves and explain how to extract square-roots of coefficients of $2$-torsion points from these points.
Expand

Additional news items may be found on the IACR news page.