International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 15 February 2023

Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, Jonas Lehmann, Doreen Riepel
ePrint Report ePrint Report
We define the Generic Group Action Model (GGAM), an adaptation of the Generic Group Model to the setting of group actions (such as CSIDH). Compared to a previously proposed definition by Montgomery and Zhandry (ASIACRYPT'22), our GGAM more accurately abstracts the security properties of group actions.

We are able to prove information-theoretic lower bounds in the GGAM for the discrete logarithm assumption, as well as for non-standard assumptions recently introduced in the setting of threshold and identification schemes on group actions. Unfortunately, in a natural quantum version of the GGAM, the discrete logarithm assumption does not hold.

To this end we also introduce the weaker Quantum Algebraic Group Action Model (QAGAM), where every set element (in superposition) output by an adversary is required to have an explicit representation relative to known elements. In contrast to the Quantum Generic Group Action Model, in the QAGAM we are able to analyze the hardness of group action assumptions: We prove (among other things) the equivalence between the discrete logarithm assumption and non-standard assumptions recently introduced in the setting of QROM security for Password-Authenticated Key Exchange, Non-Interactive Key Exchange, and Public-Key Encryption.
Expand

Additional news items may be found on the IACR news page.