IACR News item: 27 March 2023
Léo Ducas
The Lattice Isomorphism Problem (LIP) is the computational task of recovering, assuming it exists, a orthogonal linear transformation sending one lattice to another. For cryptographic purposes, the case of the trivial lattice $\mathbb Z^n$ is of particular interest ($\mathbb Z$LIP). Heuristic analysis suggests that the BKZ algorithm with blocksize $\beta = n/2 + o(n)$ solves such instances (Ducas, Postlethwaite, Pulles, van Woerden, ASIACRYPT 2022).
In this work, I propose a provable version of this statement, namely, that $\mathbb Z$LIP can indeed be solved by making polynomially many calls to a Shortest Vector Problem (SVP) oracle in dimension at most $n/2 + 1$.
In this work, I propose a provable version of this statement, namely, that $\mathbb Z$LIP can indeed be solved by making polynomially many calls to a Shortest Vector Problem (SVP) oracle in dimension at most $n/2 + 1$.
Additional news items may be found on the IACR news page.