International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 03 July 2023

Amit Jana, Anup Kumar Kundu, Goutam Paul
ePrint Report ePrint Report
At Asiacrypt 2021, Baksi et al. proposed DEFAULT, the first block cipher which provides differential fault attack (DFA) resistance at the algorithm level, with 64-bit DFA security. Initially, the cipher employed a simple key schedule where a single key was XORed throughout the rounds, and the key schedule was updated by incorporating round-independent keys in a rotating fashion. However, at Eurocrypt 2022, Nageler et al. presented a DFA that compromised the claimed DFA security of DEFAULT, reducing it by up to 20 bits for the simple key schedule and allowing for unique key recovery in the case of rotating keys. In this work, we present an enhanced differential fault attack (DFA) on the DEFAULT cipher, showcasing its effectiveness in uniquely recovering the encryption key. We commence by determining the deterministic computation of differential trails for up to five rounds. Leveraging these computed trails, we apply the DFA to the simple key schedule, injecting faults at different rounds and estimating the minimum number of faults required for successful key retrieval. Our attack achieves key recovery with minimal faults compared to previous approaches. Additionally, we extend the DFA attack to rotating keys, first recovering equivalent keys with fewer faults in the DEFAULT-LAYER, and subsequently applying the DFA separately to the DEFAULT-CORE. Furthermore, we propose a generic DFA approach for round-independent keys in the DEFAULT cipher. Lastly, we introduce a new paradigm of fault attack that combines SFA and DFA for any linear structured SBOX based cipher, enabling more efficient key recovery in the presence of both rotating and round-independent key configurations. We call this technique Statistical-Differential Fault Attack (SDFA). Our results shed light on the vulnerabilities of the DEFAULT cipher and highlight the challenges in achieving robust DFA protection for linear structure SBOX-based ciphers.
Expand

Additional news items may be found on the IACR news page.