International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 15 September 2023

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé, Benjamin Wesolowski
ePrint Report ePrint Report
The presumed hardness of the Shortest Vector Problem for ideal lattices (Ideal-SVP) has been a fruitful assumption to understand other assumptions on algebraic lattices and as a security foundation of cryptosystems. Gentry [CRYPTO'10] proved that Ideal-SVP enjoys a worst-case to average-case reduction, where the average-case distribution is the uniform distribution over the set of inverses of prime ideals of small algebraic norm (below $d^{O(d)}$ for cyclotomic fields, here $d$ refers to the field degree). De Boer et al. [CRYPTO'20] obtained another random self-reducibility result for an average-case distribution involving integral ideals of norm $2^{O(d^2)}$.

In this work, we show that Ideal-SVP for the uniform distribution over inverses of small-norm prime ideals reduces to Ideal-SVP for the uniform distribution over small-norm prime ideals. Combined with Gentry's reduction, this leads to a worst-case to average-case reduction for the uniform distribution over the set of \emph{small-norm prime ideals}. Using the reduction from Pellet-Mary and Stehl\'e [ASIACRYPT'21], this notably leads to the first distribution over NTRU instances with a polynomial modulus whose hardness is supported by a worst-case lattice problem.
Expand

Additional news items may be found on the IACR news page.