International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 24 September 2023

Fernando Virdia
ePrint Report ePrint Report
A recent series of works (Hecht, IACR ePrint, 2020–2021) propose to build post-quantum public-key encapsulation, digital signatures, group key agreement and oblivious transfer from "R-propped" variants of the Symmetrical Decomposition and Discrete Logarithm problems for matrix groups over $\mathbb{F}_{2^8}$. We break all four proposals by presenting a linearisation attack on the Symmetrical Decomposition platform, a forgery attack on the signature scheme, and a demonstration of the insecurity of the instances of the Discrete Logarithm Problem used for signatures, group key agreement and oblivious transfer, showing that none of the schemes provides adequate security.
Expand

Additional news items may be found on the IACR news page.