International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 24 September 2023

Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin, Zhenyu Guan
ePrint Report ePrint Report
As concerns are increasingly raised about data privacy, encrypted database management system (DBMS) based on fully homomorphic encryption (FHE) attracts increasing research attention, as FHE permits DBMS to be directly outsourced to cloud servers without revealing any plaintext data. However, the real-world deployment of FHE-based DBMS faces two main challenges: i) high computational latency, and ii) lack of elastic query processing capability, both of which stem from the inherent limitations of the underlying FHE operators. Here, we introduce HE$^3$DB, a fully homomorphically encrypted, efficient and elastic DBMS framework based on a new FHE infrastructure. By proposing and integrating new arithmetic and logic homomorphic operators, we devise fast and high-precision homomorphic comparison and aggregation algorithms that enable a variety of SQL queries to be applied over FHE ciphertexts, e.g., compound filter-aggregation, sorting, grouping, and joining. In addition, in contrast to existing encrypted DBMS that only support aggregated information retrieval, our framework permits further server-side analytical processing over the queried FHE ciphertexts, such as private decision tree evaluation. In the experiment, we rigorously study the efficiency and flexibility of HE$^3$DB. We show that, compared to the state-of-the-art techniques,HE$^3$DB can homomorphically evaluate end-to-end SQL queries as much as $41\times$ -$299\times$ faster than the state-of-the-art solution, completing a TPC-H query over a 16-bit 10K-row database within 241 seconds.
Expand

Additional news items may be found on the IACR news page.