International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 20 October 2023

Ahmet MALAL
ePrint Report ePrint Report
The Number Theoretic Transform (NTT) is a powerful mathematical tool with a wide range of applications in various fields, including signal processing, cryptography, and error correction codes. In recent years, there has been a growing interest in efficiently implementing the NTT on hardware platforms for lattice-based cryptography within the context of NIST's Post-Quantum Cryptography (PQC) competition. The implementation of NTT in cryptography stands as a pivotal advancement, revolutionizing various security protocols. By enabling efficient arithmetic operations in polynomial rings, NTT significantly enhances the speed and security of lattice-based cryptographic schemes, contributing to the development of robust homomorphic encryption, key exchange, and digital signature systems.

This article presents a new implementation of the Number Theoretic Transform for FPGA platforms. The focus of the implementation lies in achieving a flexible trade-off between resource usage and computation speed. By strategically adjusting the allocation of BRAM and DSP resources, the NTT computation can be optimized for either high-speed processing or resource conservation. The proposed implementation is specifically designed for polynomial multiplication with a degree of 256, accommodating coefficients of various bit sizes. Furthermore, the constant-geometry (Pease) method was utilized as an alternative to the Cooley-Tukey graph method, resulting in a notable simplification of BRAM addressing procedures. This adaptability renders it suitable for cryptographic algorithms like CRYSTALS-Dilithium and CRYSTALS-Kyber, which use 256-degree polynomials.
Expand

Additional news items may be found on the IACR news page.