International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 30 October 2023

Soumya Sahoo, Debasmita Chakraborty, Santanu Sarkar
ePrint Report ePrint Report
QARMAv2 represents a family of lightweight block ciphers introduced in ToSC 2023. This new iteration, QARMAv2, is an evolution of the original QARMA design, specifically constructed to accommodate more extended tweak values while simultaneously enhancing security measures. This family of ciphers is available in two distinct versions, referred to as QARMAv2-$b$-$s$, where ‘$b$’ signifies the block length, with options for both 64-bit and 128-bit blocks, and ‘$c$’ signifies the key length. In this paper, for the first time, we present differential fault analysis (DFA) of all the QARMAv2 variants- QARMAv2-64, and QARMAv2-128 by introducing an approach to utilize the fault propagation patterns at the nibble level, with the goal of identifying relevant faulty ciphertexts and vulnerable fault positions. This technique highlights a substantial security risk for the practical implementation of QARMAv2. By strategically introducing six random nibble faults into the input of the $(r − 1)$-th and $(r − 2)$-th backward rounds within the $r$-round QARMAv2-64, our attack achieves a significant reduction in the secret key space, diminishing it from the expansive $2^{128}$ to a significantly more smaller set of size $2^{32}$. Additionally, when targeting QARMAv2-128-128, it demands the introduction of six random nibble faults to effectively reduce the secret key space from $2^{128}$ to a remarkably reduced $2^{24}$. To conclude, we also explore the potential extension of our methods to conduct DFA on various other iterations and adaptations of the QARMAv2 cryptographic scheme. To the best of our knowledge, this marks the first instance of a differential fault attack targeting the QARMAv2 tweakable block cipher family, signifying an important direction in cryptographic analysis.
Expand

Additional news items may be found on the IACR news page.